Advances in spatial transcriptomic data analysis

被引:134
作者
Dries, Ruben [1 ,2 ,3 ]
Chen, Jiaji [1 ]
Del Rossi, Natalie [4 ]
Khan, Mohammed Muzamil [1 ,2 ,3 ]
Sistig, Adriana [4 ]
Yuan, Guo-Cheng [4 ,5 ]
机构
[1] Boston Univ, Dept Med, Sch Med, Boston, MA 02118 USA
[2] Boston Univ, Bioinformat Grad Program, Boston, MA 02215 USA
[3] Boston Univ, Sect Computat Biomed, Sch Med, Boston, MA 02118 USA
[4] Icahn Sch Med Mt Sinai, Charles Bronfman Inst Personalized Med, Dept Genet & Genom Sci, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Precis Immunol Inst, New York, NY 10029 USA
基金
美国国家卫生研究院;
关键词
CELL RNA-SEQ; IN-SITU RNA; GENE-EXPRESSION; IDENTIFICATION; ORGANIZATION; ANNOTATION; TISSUE;
D O I
10.1101/gr.275224.121
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Spatial transcriptomics is a rapidly growing field that promises to comprehensively characterize tissue organization and architecture at the single-cell or subcellular resolution. Such information provides a solid foundation for mechanistic understanding of many biological processes in both health and disease that cannot be obtained by using traditional technologies. The development of computational methods plays important roles in extracting biological signals from raw data. Various approaches have been developed to overcome technology-specific limitations such as spatial resolution, gene coverage, sensitivity, and technical biases. Downstream analysis tools formulate spatial organization and cell-cell communications as quantifiable properties, and provide algorithms to derive such properties. Integrative pipelines further assemble multiple tools in one package, allowing biologists to conveniently analyze data from beginning to end. In this review, we summarize the state of the art of spatial transcriptomic data analysis methods and pipelines, and discuss how they operate on different technological platforms.
引用
收藏
页码:1706 / 1718
页数:13
相关论文
共 139 条
[1]   A comparison of automatic cell identification methods for single-cell RNA sequencing data [J].
Abdelaal, Tamim ;
Michielsen, Lieke ;
Cats, Davy ;
Hoogduin, Dylan ;
Mei, Hailiang ;
Reinders, Marcel J. T. ;
Mahfouz, Ahmed .
GENOME BIOLOGY, 2019, 20 (01)
[2]   High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin [J].
Achim, Kaia ;
Pettit, Jean-Baptiste ;
Saraiva, Luis R. ;
Gavriouchkina, Daria ;
Larsson, Tomas ;
Arendt, Detlev ;
Marioni, John C. .
NATURE BIOTECHNOLOGY, 2015, 33 (05) :503-U215
[3]   Transcriptome-wide organization of subcellular microenvironments revealed by ATLAS-Seq [J].
Adekunle, Danielle A. ;
Wang, Eric T. .
NUCLEIC ACIDS RESEARCH, 2020, 48 (11) :5859-5872
[4]   Expansion sequencing: Spatially precise in situ transcriptomics in intact biological systems [J].
Alon, Shahar ;
Goodwin, Daniel R. ;
Sinha, Anubhav ;
Wassie, Asmamaw T. ;
Chen, Fei ;
Daugharthy, Evan R. ;
Bando, Yosuke ;
Kajita, Atsushi ;
Xue, Andrew G. ;
Marrett, Karl ;
Prior, Robert ;
Cui, Yi ;
Payne, Andrew C. ;
Yao, Chun-Chen ;
Suk, Ho-Jun ;
Wang, Ru ;
Yu, Chih-Chieh ;
Tillberg, Paul ;
Reginato, Paul ;
Pak, Nikita ;
Liu, Songlei ;
Punthambaker, Sukanya ;
Iyer, Eswar P. R. ;
Kohman, Richie E. ;
Miller, Jeremy A. ;
Lein, Ed S. ;
Lako, Ana ;
Cullen, Nicole ;
Rodig, Scott ;
Helvie, Karla ;
Abravanel, Daniel L. ;
Wagle, Nikhil ;
Johnson, Bruce E. ;
Klughammer, Johanna ;
Slyper, Michal ;
Waldman, Julia ;
Jane-Valbuena, Judit ;
Rozenblatt-Rosen, Orit ;
Regev, Aviv ;
Church, George M. ;
Marblestone, Adam H. ;
Boyden, Edward S. .
SCIENCE, 2021, 371 (6528) :481-+
[5]   Orchestrating single-cell analysis with Bioconductor [J].
Amezquita, Robert A. ;
Lun, Aaron T. L. ;
Becht, Etienne ;
Carey, Vince J. ;
Carpp, Lindsay N. ;
Geistlinger, Ludwig ;
Marini, Federico ;
Rue-Albrecht, Kevin ;
Risso, Davide ;
Soneson, Charlotte ;
Waldron, Levi ;
Pages, Herve ;
Smith, Mike L. ;
Huber, Wolfgang ;
Morgan, Martin ;
Gottardo, Raphael ;
Hicks, Stephanie C. .
NATURE METHODS, 2020, 17 (02) :137-145
[6]   sepal: identifying transcript profiles with spatial patterns by diffusion-based modeling [J].
Andersson, Alma ;
Lundeberg, Joakim .
BIOINFORMATICS, 2021, 37 (17) :2644-2650
[7]   Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography [J].
Andersson, Alma ;
Bergenstrahle, Joseph ;
Asp, Michaela ;
Bergenstrahle, Ludvig ;
Jurek, Aleksandra ;
Fernandez Navarro, Jose ;
Lundeberg, Joakim .
COMMUNICATIONS BIOLOGY, 2020, 3 (01)
[8]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[9]   Deciphering cell-cell interactions and communication from gene expression [J].
Armingol, Erick ;
Officer, Adam ;
Harismendy, Olivier ;
Lewis, Nathan E. .
NATURE REVIEWS GENETICS, 2021, 22 (02) :71-88
[10]   Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis [J].
Arnol, Damien ;
Schapiro, Denis ;
Bodenmiller, Bernd ;
Saez-Rodriguez, Julio ;
Stegle, Oliver .
CELL REPORTS, 2019, 29 (01) :202-+