Crystal structure of family 5 uracil-DNA glycosylase bound to DNA

被引:41
|
作者
Kosaka, Hiromichi
Hoseki, Jun
Nakagawa, Noriko
Kuramitsu, Seiki
Masui, Ryoji
机构
[1] Osaka Univ, Grad Sch Sci, Dept Biol Sci, Osaka 5600043, Japan
[2] RIKEN, Harima Inst, Sayo, Hyogo 6795148, Japan
[3] RIKEN, Genom Sci Ctr, Yokohama, Kanagawa 2300045, Japan
关键词
DNA repair; uracil-DNA glycosylase; crystal structure; DNA complex; family; 5; UDG; BASE-EXCISION-REPAIR; MUTATIONAL ANALYSIS; FLIPPING MECHANISM; SPECIFICITY; RECOGNITION; SUBSTRATE; DAMAGE;
D O I
10.1016/j.jmb.2007.08.022
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Uracil-DNA glycosylase (UDG) removes uracil generated by the deamination of cytosine or misincorporation of cleoxyuridine monophosphate. Within the UDG superfamily, a fifth UDG family lacks a polar residue in the active-site motif, which mediates the hydrolysis of the glycosidic bond by activation of a water molecule in UDG families 1-4. We crystal structure of a novel family 5 UDG from Thermus thermophilus HB8 complexed with DNA containing an abasic site. The active-site structure suggests this enzyme uses both steric force and water activation for its excision reaction. A conserved asparagine residue acts as a ligand to the catalytic water molecule. The structure also implies that another water molecule acts as a barrier during substrate recognition. Based on no significant open-closed conformational change upon binding to DNA, we propose a "slide-in" mechanism for initial damage recognition. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:839 / 850
页数:12
相关论文
共 50 条
  • [1] Crystal structure of mimivirus uracil-DNA glycosylase
    Kwon, Eunju
    Pathak, Deepak
    Chang, Hyeun Wook
    Kim, Dong Young
    PLOS ONE, 2017, 12 (08):
  • [2] Crystal structure of family 4 uracil-DNA glycosylase from Sulfolobus tokodaii and a function of tyrosine 170 in DNA binding
    Kawai, Akito
    Higuchi, Shigesada
    Tsunoda, Masaru
    Nakamura, Kazuo T.
    Yamagata, Yuriko
    Miyamoto, Shuichi
    FEBS LETTERS, 2015, 589 (19) : 2675 - 2682
  • [3] Poxvirus uracil-DNA glycosylase-An unusual member of the family I uracil-DNA glycosylases
    Schormann, Norbert
    Zhukovskaya, Natalia
    Bedwell, Gregory
    Nuth, Manunya
    Gillilan, Richard
    Prevelige, Peter E.
    Ricciardi, Robert P.
    Banerjee, Surajit
    Chattopadhyay, Debasish
    PROTEIN SCIENCE, 2016, 25 (12) : 2113 - 2131
  • [4] Crystal structure of a family 4 Uracil-DNA glycosylase from Thermus thermophilus HB8
    Hoseki, J
    Okamoto, A
    Masui, R
    Shibata, T
    Inoue, Y
    Yokoyama, S
    Kuramitsu, S
    JOURNAL OF MOLECULAR BIOLOGY, 2003, 333 (03) : 515 - 526
  • [5] Crystal Structure of the Vaccinia Virus Uracil-DNA Glycosylase in Complex with DNA
    Burmeister, Wim P.
    Tarbouriech, Nicolas
    Fender, Pascal
    Contesto-Richefeu, Celine
    Peyrefitte, Christophe N.
    Iseni, Frederic
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2015, 290 (29) : 17923 - 17934
  • [6] A unique uracil-DNA binding protein of the uracil DNA glycosylase superfamily
    Sang, Pau Biak
    Srinath, Thiruneelakantan
    Patil, Aravind Goud
    Woo, Eui-Jeon
    Varshney, Umesh
    NUCLEIC ACIDS RESEARCH, 2015, 43 (17) : 8452 - 8463
  • [7] Structure of uracil-DNA glycosylase from Mycobacterium tuberculosis: insights into interactions with ligands
    Kaushal, Prem Singh
    Talawar, Ramappa K.
    Varshney, Umesh
    Vijayan, M.
    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2010, 66 : 887 - 892
  • [8] New Family of Deamination Repair Enzymes in Uracil-DNA Glycosylase Superfamily
    Lee, Hyun-Wook
    Dominy, Brian N.
    Cao, Weiguo
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2011, 286 (36) : 31282 - 31287
  • [9] Binding of undamaged double stranded DNA to vaccinia virus uracil-DNA Glycosylase
    Schormann, Norbert
    Banerjee, Surajit
    Ricciardi, Robert
    Chattopadhyay, Debasish
    BMC STRUCTURAL BIOLOGY, 2015, 15
  • [10] Structure and function in the uracil-DNA glycosylase superfamily
    Pearl, LH
    MUTATION RESEARCH-DNA REPAIR, 2000, 460 (3-4): : 165 - 181