Evaluation of dissolved carbon dioxide to stimulate emergence of red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) from infested ponds

被引:5
|
作者
Abdelrahman, Hisham A. [1 ,2 ]
Gibson, Rebecca L. [2 ]
Fogelman, Kaelyn J. [2 ]
Cupp, Aaron R. [3 ]
Allert, Ann L. [4 ]
Stoecke, James A. [2 ]
机构
[1] Cairo Univ, Dept Vet Hyg & Management, Fac Vet Med, Giza 12211, Egypt
[2] Auburn Univ, Sch Fisheries Aquaculture & Aquat Sci, Auburn, AL 36849 USA
[3] US Geol Survey, Upper Midwest Environm Sci Ctr, La Crosse, WI 54603 USA
[4] US Geol Survey, Columbia Environm Res Ctr, Columbia, MO 65201 USA
来源
MANAGEMENT OF BIOLOGICAL INVASIONS | 2021年 / 12卷 / 04期
关键词
chemical control; invasive crayfish infestation; invaded ponds; integrated pest management programs; invasive species control; crayfish capture frequency; TEMPERATURE; BEHAVIOR; LIGHT; CRAB;
D O I
10.3391/mbi.2021.12.4.11
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Invasive crayfish have adverse effects on habitats and native species. Control of invasive crayfish populations is a major challenge facing natural resource managers. This study evaluated the effectiveness and optimal conditions for the control agent carbon dioxide (CO2), which can be diffused into water to facilitate capture of red swamp crayfish (Procambarus clarkii; RSC). The efficacy of CO2 shows promise in its use for a variety of invasive aquatic species. Here, we evaluate CO2's ability to stimulate movements towards the shoreline and/or induce complete terrestrial emergence from outdoor ponds. Twelve pond trials were conducted using three, 0.02-ha experimental ponds at Auburn University, Alabama, USA. Silt fencing was installed on dry land around the perimeter of each pond with the lower 0.3 m of fencing accordion-folded to provide shelter and a collection point for emerging crayfish. Each pond was stocked with 100 RSC before testing. Experimental treatment ponds were then injected with gaseous CO2 using porous air diffusers, whereas control ponds (C ponds) received no CO2. Multiple water quality parameters were monitored hourly. Three independent treatment scenarios with CO2 diffusion were crayfish captured at the end of trial only (F: final), crayfish captured hourly (H: hourly), and incorporation of continuous inflow of fresh water at a flow rate of 0.2 L/s into the central catch basin to serve as a refuge with crayfish captured hourly (R: refuge). In control ponds, crayfish were captured at the end of trial only. In F ponds, CO2 diffusion for approximately five hours caused a mean of 12% of total crayfish to emerge from the water. However, capture efficiency was increased to a mean of 45% of total crayfish by increasing collection frequency to every hour and netting submerged crayfish near the water edge in addition to capturing terrestrially emerged crayfish. Presence of a freshwater inflow reduced capture efficiency in R ponds relative to H ponds. Odds of capturing crayfish increased with increasing water temperature, CO2 concentration, crayfish mass, and with decreasing pH. Based on results, we provide a set of predictive equations as well as interactive calculators to help natural resource managers explore several environmental and treatment-related scenarios that predict changes in capture probability in small research ponds. Carbon dioxide shows promises as a tool to increase capture rate of RSC. It is not likely to be 100% effective by itself, but could be a useful component of an integrated management strategy.
引用
收藏
页码:952 / 974
页数:23
相关论文
共 50 条
  • [1] Sound production in the red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae)
    Favaro, Livio
    Tirelli, Tina
    Gamba, Marco
    Pessani, Daniela
    ZOOLOGISCHER ANZEIGER, 2011, 250 (02): : 143 - 150
  • [2] ACUTE TOXIC EFFECTS OF DELTAMETHRIN ON RED SWAMP CRAYFISH, PROCAMBARUS CLARKII (DECAPODA, CAMBARIDAE)
    Wu, N.
    Wei, H.
    Shen, H.
    Wu, T. T.
    Guo, M.
    CRUSTACEANA, 2012, 85 (08) : 993 - 1005
  • [3] BURROWING BEHAVIOR OF THE INTRODUCED RED SWAMP CRAYFISH PROCAMBARUS-CLARKII (DECAPODA, CAMBARIDAE) IN PORTUGAL
    CORREIA, AM
    FERREIRA, O
    JOURNAL OF CRUSTACEAN BIOLOGY, 1995, 15 (02) : 248 - 257
  • [4] Multiple spawning of the red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) under laboratory conditions
    Hamasaki, Katsuyuki
    Nishimoto, Sota
    Dan, Shigeki
    INVERTEBRATE REPRODUCTION & DEVELOPMENT, 2022, 66 (3-4) : 208 - 217
  • [5] New records of the invasive red swamp crayfish Procambarus clarkii (Girard, 1852) (Decapoda: Cambaridae) from Poland
    Maciaszek, Rafal
    Bonk, Maciej
    Struzynski, Witold
    KNOWLEDGE AND MANAGEMENT OF AQUATIC ECOSYSTEMS, 2019, (420)
  • [6] Reproductive biology of the red swamp crayfish Procambarus clarkii (Girard, 1852) (Decapoda: Astacidea: Cambaridae): A review
    Hamasaki, Katsuyuki
    Dan, Shigeki
    Kawai, Tadashi
    JOURNAL OF CRUSTACEAN BIOLOGY, 2023, 43 (04)
  • [7] First record of the red swamp crayfish Procambarus clarkii (Girard, 1852) (Decapoda: Astacidea: Cambaridae) in Tunisia
    Bouaoud, Mohamed Wajih
    Charfi-Cheikhrouha, Faouzia
    El Gtari, Mohamed
    BIOINVASIONS RECORDS, 2020, 9 (02): : 349 - 356
  • [8] DISTRIBUTION OF THE RED SWAMP CRAYFISH PROCAMBARUS-CLARKII (GIRARD, 1852) (DECAPODA, CAMBARIDAE) IN MEXICO - AN UPDATE
    CAMPOS, E
    RODRIGUEZALMARAZ, GA
    JOURNAL OF CRUSTACEAN BIOLOGY, 1992, 12 (04) : 627 - 630
  • [10] First record of the red swamp crayfish, Procambarus clarkii (Girard, 1852) (Decapoda, Cambaridae), from Washington state, USA
    Mueller, KW
    CRUSTACEANA, 2001, 74 : 1003 - 1007