A systematic review of spatial decision support systems in public health informatics supporting the identification of high risk areas for zoonotic disease outbreaks

被引:24
作者
Beard, Rachel [1 ,2 ]
Wentz, Elizabeth [3 ]
Scotch, Matthew [1 ,2 ]
机构
[1] Arizona State Univ, Coll Hlth Solut, Phoenix, AZ 85004 USA
[2] Arizona State Univ, Biodesign Inst, Ctr Environm Hlth Engn, Tempe, AZ USA
[3] Arizona State Univ, Sch Geog Sci & Urban Planning, Tempe, AZ USA
基金
美国国家卫生研究院;
关键词
Spatial decision support systems; Public health informatics; Decision making; computer-assisted; Zoonoses; INFECTIOUS-DISEASES; INFLUENZA-A; MOLECULAR EPIDEMIOLOGY; RESPONSE MANAGEMENT; VISUALIZATION TOOL; VIRUS; SURVEILLANCE; MAP; EVOLUTIONARY; TRANSMISSION;
D O I
10.1186/s12942-018-0157-5
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
BackgroundZoonotic diseases account for a substantial portion of infectious disease outbreaks and burden on public health programs to maintain surveillance and preventative measures. Taking advantage of new modeling approaches and data sources have become necessary in an interconnected global community. To facilitate data collection, analysis, and decision-making, the number of spatial decision support systems reported in the last 10years has increased. This systematic review aims to describe characteristics of spatial decision support systems developed to assist public health officials in the management of zoonotic disease outbreaks.MethodsA systematic search of the Google Scholar database was undertaken for published articles written between 2008 and 2018, with no language restriction. A manual search of titles and abstracts using Boolean logic and keyword search terms was undertaken using predefined inclusion and exclusion criteria. Data extraction included items such as spatial database management, visualizations, and report generation.ResultsFor this review we screened 34 full text articles. Design and reporting quality were assessed, resulting in a final set of 12 articles which were evaluated on proposed interventions and identifying characteristics were described. Multisource data integration, and user centered design were inconsistently applied, though indicated diverse utilization of modeling techniques.ConclusionsThe characteristics, data sources, development and modeling techniques implemented in the design of recent SDSS that target zoonotic disease outbreak were described. There are still many challenges to address during the design process to effectively utilize the value of emerging data sources and modeling methods. In the future, development should adhere to comparable standards for functionality and system development such as user input for system requirements, and flexible interfaces to visualize data that exist on different scales.PROSPERO registration number: CRD42018110466.
引用
收藏
页数:19
相关论文
共 142 条
[1]   Spreading of hepatitis C virus subtypes 1a and 1b through the central region of Argentina [J].
Alberto Culasso, Andres Carlos ;
Farias, Adrian ;
Alejandro Di Lello, Federico ;
Dario Golemba, Marcelo ;
Re, Viviana ;
Barbini, Luciana ;
Campos, Rodolfo .
INFECTION GENETICS AND EVOLUTION, 2014, 26 :32-40
[2]   ID-Viewer: a visual analytics architecture for infectious diseases surveillance and response management in Pakistan [J].
Ali, M. A. ;
Ahsan, Z. ;
Amin, M. ;
Latif, S. ;
Ayyaz, A. ;
Ayyaz, M. N. .
PUBLIC HEALTH, 2016, 134 :72-85
[3]  
Anderson G., 2003, T GIS, V7, P447, DOI [DOI 10.1111/1467-9671.00158/PDF, 10.1111/1467-9671.00158, DOI 10.1111/1467-9671.00158]
[4]  
[Anonymous], BMJ BR MED J
[5]  
[Anonymous], GEOINFORMATICA
[6]  
[Anonymous], BIORXIV
[7]  
[Anonymous], 6 INT S COMP ASS CAR
[8]  
[Anonymous], NATURE
[9]  
[Anonymous], BMC INFECT DIS
[10]  
[Anonymous], 1985, P 7 INT S COMP ASS C