Effect of composite electrode thickness on the electrochemical performances of all-solid-state li-ion batteries

被引:18
|
作者
Kubanska, Agnieszka [1 ,2 ,3 ]
Castro, Laurent [4 ]
Tortet, Laurence [1 ,2 ,3 ]
Dolle, Mickael [4 ,5 ]
Bouchet, Renaud [1 ,2 ,3 ,6 ]
机构
[1] Univ Aix Marseille 1, Lab Madirel, Ctr St Jerome, CNRS,UMR 7246, F-13397 Marseille 20, France
[2] Univ Aix Marseille 2, Lab Madirel, Ctr St Jerome, CNRS,UMR 7246, F-13397 Marseille 20, France
[3] Univ Aix Marseille 3, Lab Madirel, Ctr St Jerome, CNRS,UMR 7246, F-13397 Marseille 20, France
[4] Univ Bordeaux, Inst Chim Matiere Condensee Bordeaux, CNRS, F-33608 Pessac, France
[5] Univ Montreal, Dept Chem, Stn Downtown, POB 6128, Montreal, PQ H3C 3J7, Canada
[6] Univ Grenoble Alpes, Grenoble INP, CNRS, LEPMI UMR5279,Equipe ELSA, 1130 Rue Piscine, F-38402 St Martin Dheres, France
关键词
Spark plasma sintering; Ceramic; all-solid-state" battery; Microstructure; Polarization; THIN-FILM; RECHARGEABLE BATTERIES; LITHIUM BATTERIES; CHALLENGES; CONDUCTORS; PARTICLES;
D O I
10.1007/s10832-017-0088-8
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Several ceramic half-cells with differing electrode composite thicknesses but identical formulations were assembled using the spark plasma sintering (SPS) technique, in order to conduct comparable investigations of their kinetic limitations. The SPS technique was used to assemble the composite electrode and the electrolyte together within a few minutes. NASICON-type Li1.5Al0.5Ge1.5(PO4)(3) (LAGP) ceramic was used as solid electrolyte, as it offers high ionic conductivity (3 x 10(-4) S.cm(-1) at 25 A degrees C) with a Li+ transport number of 1. LiFePO4 active material was used as a model material; it offers an average flat potential of 3.45 V vs Li+/Li and a reasonably high theoretical capacity of 170 mAh.g(-1). Surface capacity values (from 0.8 to 3.5 mAh.cm(-2)), which are proportional to electrode thickness, remained quite close to the initial values after more than 20 cycles, even for a 325 mu m thick electrode (3.5 mAh.cm(-2)). The overpotential in the flat plateau region was proportional to the current density used, which means that it was dependent only on the cell's ohmic drop. Performances were not limited by the ion transport into the solid electrolyte and composite electrode volume - as in classical Li-ion batteries - since the transport number of LAGP is one. Therefore, very thick electrode-enabling batteries with high-surface capacity can be considered.
引用
收藏
页码:189 / 196
页数:8
相关论文
共 50 条
  • [31] Interfacial Reaction between Li Metal and Solid Electrolyte in All-Solid-State Batteries
    Kim, Jae-Hun
    CORROSION SCIENCE AND TECHNOLOGY-KOREA, 2023, 22 (04): : 287 - 296
  • [32] Solution-Processable Glass LiI-Li4SnS4 Superionic Conductors for All-Solid-State Li-Ion Batteries
    Park, Kern Ho
    Oh, Dae Yang
    Choi, Young Eun
    Nam, Young Jin
    Han, Lili
    Kim, Ju-Young
    Xin, Huolin
    Lin, Feng
    Oh, Seung M.
    Jung, Yoon Seok
    ADVANCED MATERIALS, 2016, 28 (09) : 1874 - 1883
  • [33] All-Solid-State Thin Film Li-Ion Batteries: New Challenges, New Materials, and New Designs
    Wu, Baolin
    Chen, Chunguang
    Danilov, Dmitri L.
    Eichel, Ruediger-A.
    Notten, Peter H. L.
    BATTERIES-BASEL, 2023, 9 (03):
  • [34] Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries
    Wu, Jian-Fang
    Pang, Wei Kong
    Peterson, Vanessa K.
    Wei, Lu
    Guo, Xin
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (14) : 12461 - 12468
  • [35] Effect of synthesis process on the Li-ion conductivity of LiTa2PO8 solid electrolyte materials for all-solid-state batteries
    Takeda, Hayami
    Shibasaki, Miki
    Murakami, Kento
    Tanaka, Miki
    Makino, Keisuke
    Tanibata, Naoto
    Maeda, Hirotaka
    Nakayama, Masanobu
    ENERGY ADVANCES, 2024, 3 (09): : 2238 - 2244
  • [36] Electromechanical Failure of NASICON-Type Solid-State Electrolyte-Based All-Solid-State Li-Ion Batteries
    He, Linchun
    Oh, Jin An Sam
    Watarai, Kenta
    Morita, Masato
    Zhao, Yue
    Sun, Qiaomei
    Sakamoto, Tetsuo
    Lu, Li
    Adams, Stefan
    CHEMISTRY OF MATERIALS, 2021, 33 (17) : 6841 - 6852
  • [37] Enhanced Li-Ion Conductivity and Air Stability of Sb-Substituted Li4GeS4 toward All-Solid-State Li-Ion Batteries
    Roh, Jihun
    Lyoo, Jeyne
    Hong, Seung-Tae
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (10) : 5446 - 5455
  • [38] Basicity regulation of Ni-rich layered oxide cathodes for all-solid-state Li-ion batteries
    Fan, Xiao-Zhong
    Zhang, Jin-Hao
    Zhou, Xiao-He
    Chen, Jin-Xiu
    Shi, Yan-Qin
    Kalimuldina, Gulnur
    Wang, Fang
    Belgibayeva, Ayaulym
    Kong, Long
    JOURNAL OF ENERGY CHEMISTRY, 2025, 105 : 454 - 460
  • [39] Synthesis and Electrochemical Characterization of a Glass-Ceramic Li7P2S8I Solid Electrolyte for All-Solid-State Li-Ion Batteries
    Choi, Seon-Joo
    Lee, Sang-Hun
    Ha, Yoon-Cheol
    Yu, Ji-Hyun
    Doh, Chil-Hoon
    Lee, Youjin
    Park, Jun-Woo
    Lee, Sang-Min
    Shin, Heon-Cheol
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (05) : A957 - A962
  • [40] Advanced High-Voltage All-Solid-State Li-Ion Batteries Enabled by a Dual-Halogen Solid Electrolyte
    Zhang, Shumin
    Zhao, Feipeng
    Wang, Shuo
    Liang, Jianwen
    Wang, Jian
    Wang, Changhong
    Zhang, Hao
    Adair, Keegan
    Li, Weihan
    Li, Minsi
    Duan, Hui
    Zhao, Yang
    Yu, Ruizhi
    Li, Ruying
    Huang, Huan
    Zhang, Li
    Zhao, Shangqian
    Lu, Shigang
    Sham, Tsun-Kong
    Mo, Yifei
    Sun, Xueliang
    ADVANCED ENERGY MATERIALS, 2021, 11 (32)