Heat kernel estimates for Δ + Δα/2 under gradient perturbation

被引:22
作者
Chen, Zhen-Qing [1 ]
Hu, Eryan [2 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
基金
美国国家科学基金会;
关键词
Heat kernel; Transition density; Feller semigroup; Perturbation; Positivity; Levy system; Kato class; BROWNIAN-MOTION; SINGULAR DRIFT; FRACTIONAL LAPLACIAN; HARNACK INEQUALITY; STABLE PROCESS; SETS;
D O I
10.1016/j.spa.2015.02.016
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For alpha is an element of (0, 2) and M > 0, we consider a family of nonlocal operators {Delta + a(alpha) Delta(alpha/2), a is an element of (0, M]} on le under Kato class gradient perturbation. We establish the existence and uniqueness of their fundamental solutions, and derive their sharp two-sided estimates. The estimates give explicit dependence on a and recover the sharp estimates for Brownian motion with drift as a -> 0. Each fundamental solution determines a conservative Feller process X. We characterize X as the unique solution of the corresponding martingale problem as well as a Levy process with singular drift. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:2603 / 2642
页数:40
相关论文
共 18 条
[1]  
Applebaum D., 2004, Levy Processes and Stochastic Calculus
[2]  
Bass RF, 2003, ANN PROBAB, V31, P791
[3]  
Blumenthal R. M., 1968, Markov processes and potential theory, V29
[4]   Estimates of heat kernel of fractional Laplacian perturbed by gradient operators [J].
Bogdan, Krzysztof ;
Jakubowski, Tomasz .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 271 (01) :179-198
[5]  
Chen Z., 2014, PREPRINT
[6]  
Chen Z.-Q., ARXIV13096414MATHPR
[7]  
Chen Z.-Q., ARXIV13127594MATHPR
[8]   Heat kernel estimates for jump processes of mixed types on metric measure spaces [J].
Chen, Zhen-Qing ;
Kumagai, Takashi .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 140 (1-2) :277-317
[9]   DIRICHLET HEAT KERNEL ESTIMATES FOR FRACTIONAL LAPLACIAN WITH GRADIENT PERTURBATION [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming .
ANNALS OF PROBABILITY, 2012, 40 (06) :2483-2538
[10]   Heat kernel estimates for δ+δα/2 in C1, 1 open sets [J].
Chen, Zhen-Qing ;
Kim, Panki ;
Song, Renming .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2011, 84 :58-80