A note on the size-Ramsey number of long subdivisions of graphs

被引:11
作者
Donadelli, J
Haxell, PE
Kohayakawa, Y
机构
[1] Univ Fed Parana, Ctr Politecn, Dept Informat, BR-81531980 Curitiba, Parana, Brazil
[2] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[3] Univ Sao Paulo, Inst Matemat & Estatist, BR-05508900 Sao Paulo, Brazil
来源
RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS | 2005年 / 39卷 / 01期
关键词
The size-Ramsey number; Ramsey theory; expanders; Ramanujan graphs; explicit constructions;
D O I
10.1051/ita:2005019
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let TsH be the graph obtained from a given graph H by subdividing each edge s times. Motivated by a problem raised by Igor Pak [Mixing time and long paths in graphs, in Proc. of the 13th annual ACM-SIAM Symposium on Discrete Algorithms ( SODA 2002) 321-328], we prove that, for any graph H, there exist graphs G with O(s) edges that are Ramsey with respect to TsH.
引用
收藏
页码:191 / 206
页数:16
相关论文
共 32 条
[1]   SUBDIVIDED GRAPHS HAVE LINEAR RAMSEY NUMBERS [J].
ALON, N .
JOURNAL OF GRAPH THEORY, 1994, 18 (04) :343-347
[2]   EXPLICIT CONSTRUCTION OF LINEAR SIZED TOLERANT NETWORKS [J].
ALON, N ;
CHUNG, FRK .
DISCRETE MATHEMATICS, 1988, 72 (1-3) :15-19
[3]  
ALON N, 2000, SER DISCRETE MATH OP
[4]   ON SIZE RAMSEY NUMBER OF PATHS, TREES, AND CIRCUITS .1. [J].
BECK, J .
JOURNAL OF GRAPH THEORY, 1983, 7 (01) :115-129
[5]  
BECK J, 1990, ALGORITHMS COMBINATO, V5, P34
[6]   THE RAMSEY NUMBER OF A GRAPH WITH BOUNDED MAXIMUM DEGREE [J].
CHVATAL, C ;
RODL, V ;
SZEMEREDI, E ;
TROTTER, WT .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 34 (03) :239-243
[7]  
Diestel R., 1997, Graph Theory
[8]  
Erdos P., 1978, Periodica Mathematica Hungarica, V9, P145, DOI 10.1007/BF02018930
[9]  
Erdos P., 1975, C MATH SOC J BOLYAI, V10, P515
[10]  
Erdos P., 1973, Infinite and Finite Sets, Colloquia Mathematica Societatis Janos Bolyai