GAIT ENERGY IMAGE RESTORATION USING GENERATIVE ADVERSARIAL NETWORKS

被引:0
作者
Babaee, Maryam [1 ]
Zhu, Yue [1 ]
Koepueklue, Okan [1 ]
Hoermann, Stefan [1 ]
Rigoll, Gerhard [1 ]
机构
[1] Tech Univ Munich, Inst Human Machine Commun, Munich, Germany
来源
2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2019年
关键词
Gait Recognition; Gait Energy Image; Generative Adversarial Networks;
D O I
10.1109/icip.2019.8803236
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Gait is a biometric property that can be used for human identification in video surveillance. Basically, different gait features require motion of a person walking over one complete gait cycle. For example, in Gait Energy Image (GEI), average of silhouette images over one complete gait cycle is computed. However, in reality, there might be a partial gait cycle data available due to occlusion. In this paper, we propose a Generative Adversarial Network (GAN) in order to address the problem of gait recognition from incomplete gait cycle. Precisely, the network is able to reconstruct complete GEIs from incomplete GEIs. The proposed architecture is composed of (i) a generator which is an auto-encoder network to construct complete GEIs out of incomplete GEIs and (ii) two discriminators, one of which discriminates whether a given image is a full GEI while the other discriminates whether two GEIs belong to the same subject. We evaluate our approach on the OULP large gait dataset confirming that the proposed architecture successfully reconstructs complete GEIs from even extreme incomplete gait cycles.
引用
收藏
页码:2596 / 2600
页数:5
相关论文
共 50 条
  • [21] SAR IMAGE SIMULATION BY GENERATIVE ADVERSARIAL NETWORKS
    Bao, Xianjie
    Pan, Zongxu
    Liu, Lei
    Lei, Bin
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 9995 - 9998
  • [22] Photoacoustic image synthesis with generative adversarial networks
    Schellenberg, Melanie
    Groehl, Janek
    Dreher, Kris K.
    Noelke, Jan-Hinrich
    Holzwarth, Niklas
    Tizabi, Minu D.
    Seitel, Alexander
    Maier-Hein, Lena
    PHOTOACOUSTICS, 2022, 28
  • [23] Image Style Transfer with Generative Adversarial Networks
    Li, Ru
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2950 - 2954
  • [24] Lung image segmentation by generative adversarial networks
    Cai, Jiaxin
    Zhu, Hongfeng
    2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [25] Stacked generative adversarial networks for image compositing
    Bing Yu
    Youdong Ding
    Zhifeng Xie
    Dongjin Huang
    EURASIP Journal on Image and Video Processing, 2021
  • [26] Single-Image Depth Inference Using Generative Adversarial Networks
    Tan, Daniel Stanley
    Yao, Chih-Yuan
    Ruiz, Conrado, Jr.
    Hua, Kai-Lung
    SENSORS, 2019, 19 (07)
  • [27] Generic image application using GANs (Generative Adversarial Networks): A Review
    S. P. Porkodi
    V. Sarada
    Vivek Maik
    K. Gurushankar
    Evolving Systems, 2023, 14 : 903 - 917
  • [28] Low-light image enhancement using generative adversarial networks
    Wang, Litian
    Zhao, Liquan
    Zhong, Tie
    Wu, Chunming
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [29] Realistic River Image Synthesis Using Deep Generative Adversarial Networks
    Gautam, Akshat
    Sit, Muhammed
    Demir, Ibrahim
    FRONTIERS IN WATER, 2022, 4
  • [30] Generic image application using GANs (Generative Adversarial Networks): A Review
    Porkodi, S. P.
    Sarada, V.
    Maik, Vivek
    Gurushankar, K.
    EVOLVING SYSTEMS, 2023, 14 (05) : 903 - 917