Thermal properties and Calcium-Magnesium-Alumina-Silicate (CMAS) resistance of LuPO4 as environmental barrier coatings

被引:19
作者
Hu, Xunxun [1 ]
Xu, Fangfang [2 ]
Li, Kunwei [3 ]
Zhang, Yizhou [4 ]
Xu, Yue [4 ]
Zhao, Xinqing [1 ]
机构
[1] Beihang Univ, Sch Mat Sci & Engn, Beijing 700191, Peoples R China
[2] Guobiao Beijing Testing & Certificat Co Ltd, 2 Xinjiekouwai St, Beijing 100088, Peoples R China
[3] Chino Natl Inst Standardizat, 4 Zhichun Rd, Beijing 100191, Peoples R China
[4] Beihang Univ, Sch Chem, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
LuPO4; ceramics; Environmental barrier coatings; Thermal properties; CMAS corrosion; VAPOR CORROSION BEHAVIOR; SPEED STEAM JET; PHASE; CONDUCTIVITY; MECHANISM; RE2SIO5; GLASS;
D O I
10.1016/j.jeurceramsoc.2019.11.018
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
LuPO4 ceramics have been synthesized by chemical precipitation and calcination approaches. The phase stability and the thermal properties of the ceramics as well as the thermochemical reactions between LuPO4 pellet and calcium-magnesium-alumina-silicate at 1300 degrees C have been investigated. The results indicated that LuPO4 has a relatively lower thermal conductivity (1.86 W m(-1) K-1 at 1200 ) and a well-matched coefficient of thermal expansion (5.92 10(-6) K-1) with SiC based ceramic matrix composites. No phase transformation occurs in single phase LuPO4 during the heating from room temperature to 1300 . Corrosion tests showed that CMAS can dissolve LuPO4 and cause precipitation of crystalline phases such as Lu2Si2O7, CaAl2Si2O8, CaMgSi2O6, Ca2Lu8 (SiO4)(6)O-2 and Ca8MgLu (PO4)(7). Extending the corrosion duration results in the formation of Ca2Lu8 (SiO4)(6)O-2 apatite and other crystalline phases with a dendritic-like structure in the CMAS layer. CMAS corrosion resistance of LuPO4 is significantly greater than Lu2Si2O7 since less LuPO4 need to be dissolved to form a protective apatite barrier layer. Ca8MgLu (PO4)(7) tends to form a continuous reaction layer at the CMAS/LuPO4 interface. This dense and continuous layer can effectively inhibit molten CMAS penetration into LuPO4.
引用
收藏
页码:1471 / 1477
页数:7
相关论文
共 30 条
[1]   Thermal Properties of Rare-Earth Monosilicates for EBC on Si-Based Ceramic Composites [J].
Al Nasiri, Nasrin ;
Patra, Niranjan ;
Horlait, Denis ;
Jayaseelan, Daniel Doni ;
Lee, William E. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2016, 99 (02) :589-596
[2]  
[Anonymous], MRS B
[3]  
Felsche J., 1973, RARE EARTHS, P99, DOI DOI 10.1007/3-540-06125-8_3
[4]   Thermal Expansion of Rare-Earth Pyrosilicates [J].
Fernandez-Carrion, Alberto J. ;
Allix, Mathieu ;
Becerro, Ana I. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (07) :2298-2305
[5]   Water vapor corrosion behavior and failure mechanism of plasma sprayed mullite/Lu2Si2O7-Lu2SiO5 coatings [J].
Hu, Xunxun ;
Xu, Fangfang ;
Li, Kunwei ;
Jin, Gen ;
Xu, Yue ;
Zhao, Xinqing .
CERAMICS INTERNATIONAL, 2018, 44 (12) :14177-14185
[6]   Hot corrosion of RE2SiO5 with different cation substitution under calcium-magnesium- aluminosilicate attack [J].
Jiang, Fengrui ;
Cheng, Laifei ;
Wang, Yiguang .
CERAMICS INTERNATIONAL, 2017, 43 (12) :9019-9023
[7]   Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts [J].
Kraemer, Stephan ;
Yang, James ;
Levi, Carlos G. .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (02) :576-583
[8]   Rare earth silicate environmental barrier coatings for SiC/SiC composites and Si3N4 ceramics [J].
Lee, KN ;
Fox, DS ;
Bansal, NP .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2005, 25 (10) :1705-1715
[9]   Current status of environmental barrier coatings for Si-based ceramics [J].
Lee, KN .
SURFACE & COATINGS TECHNOLOGY, 2000, 133 :1-7
[10]  
Leitner J, 2003, THERMOCHIM ACTA, V395, P27