Holder continuity of local minimizers of vectorial integral functionals

被引:2
作者
Cupini, G [1 ]
Petti, R [1 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2003年 / 10卷 / 03期
关键词
local minimizer; regularity; Holder continuity;
D O I
10.1007/s00030-003-1025-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
study the regularity of vector-valued local minimizers in W-1,W-p, p > 1, of the integral functional mu --> integral(Omega) [(mu(2) + \Dmu\(2))(p/2) + f (x, mu, \Dmu\)] dx, where Omega is an open set in R-N and f is a continuous function, convex with respect to the last variable, such that 0 less than or equal to f(x, mu, t) less than or equal to C(1 + t(P)). We prove that if f = f (x, t), or f = f (x, mu, t) and p greater than or equal to N, then local minimizers are locally Holder continuous for any exponent less' than 1. If f = f (x, mu, t) and p < N then local minimizers are Holder continuous for every exponent less than 1 in an open set Omega(0) such that the Hausdorff dimension of Omega \ Omega(0) is less than N - p.
引用
收藏
页码:269 / 285
页数:17
相关论文
共 21 条
[1]   REGULARITY FOR MINIMIZERS OF NON-QUADRATIC FUNCTIONALS - THE CASE 1-LESS-THAN-P-LESS-THAN-2 [J].
ACERBI, E ;
FUSCO, N .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 140 (01) :115-135
[2]  
CAMPANATO S, 1963, ANN SCUOLA NORM SUP, V17, P157
[3]   Holder continuity of local minimizers [J].
Cupini, G ;
Fusco, N ;
Petti, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 235 (02) :578-597
[4]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[5]   Regularity results for minimizers of irregular integrals with (p, q) growth [J].
Esposito, L ;
Leonetti, F ;
Mingione, G .
FORUM MATHEMATICUM, 2002, 14 (02) :245-272
[6]  
ESPOSITO L, 1996, RIC MAT, V45, P311
[7]   An existence result for a nonconvex variational problem via regularity [J].
Fonseca, I ;
Fusco, N ;
Marcellini, P .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 7 (04) :69-95
[8]  
Fonseca I., 1997, Ann. Scuola Norm. Super. Pisa-Cl. Sci, P463
[9]   PARTIAL REGULARITY FOR MINIMISERS OF CERTAIN FUNCTIONALS HAVING NONQUADRATIC GROWTH [J].
FUSCO, N ;
HUTCHINSON, J .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1989, 155 :1-24
[10]  
FUSCO N, 2001, J CONVEX ANAL, V8