Benchmarking evolutionary multiobjective optimization algorithms

被引:0
|
作者
Mersmann, Olaf [1 ]
Trautmann, Heike [1 ]
Naujoks, Boris [2 ]
Weihs, Claus [1 ]
机构
[1] TU Dortmund Univ, Dept Stat, Dortmund, Germany
[2] TU Dortmund Univ, Dept Comp Sci, Dortmund, Germany
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Choosing and tuning an optimization procedure for a given class of nonlinear optimization problems is not an easy task. One way to proceed is to consider this as a tournament, where each procedure will compete in different 'disciplines'. Here, disciplines could either be different functions, which we want to optimize, or specific performance measures of the optimization procedure. We would then be interested in the algorithm that performs best in a majority of cases or whose average performance is maximal. We will focus on evolutionary multiobjective optimization algorithms (EMOA), and will present a novel approach to the design and analysis of evolutionary multiobjective benchmark experiments based on similar work from the context of machine learning. We focus on deriving a consensus among several benchmarks over different test problems and illustrate the methodology by reanalyzing the results of the CEC 2007 EMOA competition.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Convergence Rates of (1+1) Evolutionary Multiobjective Optimization Algorithms
    Beume, Nicola
    Laumanns, Marco
    Rudolph, Guenter
    PARALLEL PROBLEMS SOLVING FROM NATURE - PPSN XI, PT I, 2010, 6238 : 597 - +
  • [42] A survey on handling computationally expensive multiobjective optimization problems with evolutionary algorithms
    Chugh, Tinkle
    Sindhya, Karthik
    Hakanen, Jussi
    Miettinen, Kaisa
    SOFT COMPUTING, 2019, 23 (09) : 3137 - 3166
  • [43] Choosing extreme parents for diversity improvement in evolutionary multiobjective optimization algorithms
    Ishibuchi, Hisao
    Tsukamoto, Noritaka
    Nojima, Yusuke
    2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 2230 - 2235
  • [44] Evolutionary algorithms with dynamic population size and local exploration for multiobjective optimization
    Tan, KC
    Lee, TH
    Khor, EF
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2001, 5 (06) : 565 - 588
  • [45] The Pareto-Box problem for the modelling of evolutionary multiobjective optimization algorithms
    Köppen, M
    Vicente-Garcia, R
    Nickolay, B
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, 2005, : 194 - 197
  • [46] A General Framework of Dynamic Constrained Multiobjective Evolutionary Algorithms for Constrained Optimization
    Zeng, Sanyou
    Jiao, Ruwang
    Li, Changhe
    Li, Xi
    Alkasassbeh, Jawdat S.
    IEEE TRANSACTIONS ON CYBERNETICS, 2017, 47 (09) : 2678 - 2688
  • [47] Incorporation of decision maker's preference into evolutionary multiobjective optimization algorithms
    Ishibuchi, Hisao
    Nojima, Yusuke
    Narukawa, Kaname
    Doi, Tsutomu
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 741 - +
  • [48] Optimization of cotton dyeing with reactive dyestuff using multiobjective evolutionary algorithms
    Boukouvalas, Dimitria T.
    Rosa, Jorge Marcos
    Belan, Peterson Adriano
    Tambourgi, Elias Basile
    Curvelo Santana, Jose Carlos
    de Araujo, Sidnei Alves
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 219
  • [49] An improved robust topology optimization approach using multiobjective evolutionary algorithms
    Garcia-Lopez, N. P.
    Sanchez-Silva, M.
    Medaglia, A. L.
    Chateauneuf, A.
    COMPUTERS & STRUCTURES, 2013, 125 : 1 - 10
  • [50] On Gradients and Hybrid Evolutionary Algorithms for Real-Valued Multiobjective Optimization
    Bosman, Peter A. N.
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2012, 16 (01) : 51 - 69