Benchmarking evolutionary multiobjective optimization algorithms

被引:0
|
作者
Mersmann, Olaf [1 ]
Trautmann, Heike [1 ]
Naujoks, Boris [2 ]
Weihs, Claus [1 ]
机构
[1] TU Dortmund Univ, Dept Stat, Dortmund, Germany
[2] TU Dortmund Univ, Dept Comp Sci, Dortmund, Germany
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Choosing and tuning an optimization procedure for a given class of nonlinear optimization problems is not an easy task. One way to proceed is to consider this as a tournament, where each procedure will compete in different 'disciplines'. Here, disciplines could either be different functions, which we want to optimize, or specific performance measures of the optimization procedure. We would then be interested in the algorithm that performs best in a majority of cases or whose average performance is maximal. We will focus on evolutionary multiobjective optimization algorithms (EMOA), and will present a novel approach to the design and analysis of evolutionary multiobjective benchmark experiments based on similar work from the context of machine learning. We focus on deriving a consensus among several benchmarks over different test problems and illustrate the methodology by reanalyzing the results of the CEC 2007 EMOA competition.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] An Evolutionary Multiobjective Optimization Algorithms Framework with Algorithm Adaptive Selection
    Wang, Dan
    Liu, Hai-lin
    Gu, Fangqing
    2014 11TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2014, : 1336 - 1341
  • [32] Multiobjective Optimization Using Evolutionary Algorithms in Agile Teams Allocation
    Brandao Caldeira, Junea Eliza
    Imaeda Yoshioka, Sergio Roberto
    de Oliveira Rodrigues, Bruno Rafael
    Parreiras, Fernando Silva
    SBQS: PROCEEDINGS OF THE 18TH BRAZILIAN SYMPOSIUM ON SOFTWARE QUALITY, 2019, : 89 - 98
  • [33] On the benchmarking of multiobjective optimization algorithm
    Köppen, M
    KNOWLEDGE-BASED INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT 1, PROCEEDINGS, 2003, 2773 : 379 - 385
  • [34] MIJ2K Optimization using evolutionary multiobjective optimization algorithms
    Luis Bustamante, Alvaro
    Molina Lopez, Jose M.
    Patricio, Miguel A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (09) : 10999 - 11010
  • [35] A tool for multiobjective evolutionary algorithms
    Sag, Tahir
    Cunkas, Mehmet
    ADVANCES IN ENGINEERING SOFTWARE, 2009, 40 (09) : 902 - 912
  • [36] On the convergence of multiobjective evolutionary algorithms
    Hanne, T
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1999, 117 (03) : 553 - 564
  • [37] Interactive Multiobjective Evolutionary Algorithms
    Jaszkiewicz, Andrzej
    Branke, Juergen
    MULTIOBJECTIVE OPTIMIZATION: INTERACTIVE AND EVOLUTIONARY APPROACHES, 2008, 5252 : 179 - +
  • [38] Evolutionary Multiobjective Optimization
    Yen, Gary G.
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2009, 4 (03) : 2 - 2
  • [39] Benchmarking Languages for Evolutionary Algorithms
    Merelo, J. J.
    Castillo, Pedro
    Blancas, Israel
    Romero, Gustavo
    Garcia-Sanchez, Pablo
    Fernandez-Ares, Antonio
    Rivas, Victor
    Garcia-Valdez, Mario
    APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2016, PT II, 2016, 9598 : 27 - 41
  • [40] Evolutionary multiobjective optimization
    Coello Coello, Carlos A.
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 1 (05) : 444 - 447