Benchmarking evolutionary multiobjective optimization algorithms

被引:0
|
作者
Mersmann, Olaf [1 ]
Trautmann, Heike [1 ]
Naujoks, Boris [2 ]
Weihs, Claus [1 ]
机构
[1] TU Dortmund Univ, Dept Stat, Dortmund, Germany
[2] TU Dortmund Univ, Dept Comp Sci, Dortmund, Germany
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Choosing and tuning an optimization procedure for a given class of nonlinear optimization problems is not an easy task. One way to proceed is to consider this as a tournament, where each procedure will compete in different 'disciplines'. Here, disciplines could either be different functions, which we want to optimize, or specific performance measures of the optimization procedure. We would then be interested in the algorithm that performs best in a majority of cases or whose average performance is maximal. We will focus on evolutionary multiobjective optimization algorithms (EMOA), and will present a novel approach to the design and analysis of evolutionary multiobjective benchmark experiments based on similar work from the context of machine learning. We focus on deriving a consensus among several benchmarks over different test problems and illustrate the methodology by reanalyzing the results of the CEC 2007 EMOA competition.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On Benchmarking Interactive Evolutionary Multiobjective Algorithms
    Shavarani, Seyed Mahdi
    Lopez-Ibanez, Manuel
    Knowles, Joshua
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (04) : 1084 - 1098
  • [2] An Overview of Evolutionary Algorithms in Multiobjective Optimization
    Fonseca, Carlos M.
    Fleming, Peter J.
    EVOLUTIONARY COMPUTATION, 1995, 3 (01) : 1 - 16
  • [3] Robust Multiobjective Optimization via Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    Yi, Zhang
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (02) : 316 - 330
  • [4] Global Multiobjective Optimization Using Evolutionary Algorithms
    Thomas Hanne
    Journal of Heuristics, 2000, 6 : 347 - 360
  • [5] Multiobjective Evolutionary Algorithms for Intradomain Routing Optimization
    Rocha, Miguel
    Sa, Tiago
    Sousa, Pedro
    Cortez, Paulo
    Rio, Miguel
    2011 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2011, : 2272 - 2279
  • [6] Global multiobjective optimization using evolutionary algorithms
    Hanne, T
    JOURNAL OF HEURISTICS, 2000, 6 (03) : 347 - 360
  • [7] Constructing Evolutionary Algorithms for Bilevel Multiobjective Optimization
    Ruuska, Sauli
    Miettinen, Kaisa
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [8] A hierarchical approach in distributed evolutionary algorithms for multiobjective optimization
    Zaharie, Daniela
    Petcu, Dana
    Panica, Silviu
    LARGE-SCALE SCIENTIFIC COMPUTING, 2008, 4818 : 516 - 523
  • [9] A Survey on Learnable Evolutionary Algorithms for Scalable Multiobjective Optimization
    Liu, Songbai
    Lin, Qiuzhen
    Li, Jianqiang
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (06) : 1941 - 1961
  • [10] Multiobjective evolutionary algorithms for complex portfolio optimization problems
    Anagnostopoulos K.P.
    Mamanis G.
    Computational Management Science, 2011, 8 (3) : 259 - 279