Appearance-Based Gaze Tracking: A Brief Review

被引:11
作者
Jiang, Jiaqi [1 ]
Zhou, Xiaolong [1 ,2 ]
Chan, Sixian [1 ]
Chen, Shengyong [1 ,3 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou, Peoples R China
[2] Quzhou Univ, Coll Elect & Informat Engn, Quzhou, Peoples R China
[3] Tianjin Univ Technol, Sch Comp Commun & Engn, Tianjin, Peoples R China
来源
INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PART VI | 2019年 / 11745卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Gaze tracking; HCI; Appearance-based; Mapping; DIRECTION;
D O I
10.1007/978-3-030-27529-7_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human gaze tracking plays an important role in the field of Human-Computer Interaction. This paper presents a brief review on appearance-based gaze tracking. Based on the appearance of human eyes, input features can be classified into three categories according to the different ways of extracting human eyes features, namely, complete human eye image, pixel-based feature and 3D reconstruction image. The estimation process from human eye feature to fixation point mainly uses different mapping functions. In this paper, common mapping functions and related algorithms are described in detail: k-nearest neighbor (KNN), random forest (RF) regression, gaussian process (GP) regression, support vector machines (SVM) and artificial neural networks (ANN). This paper evaluates the performance of these gaze tracking algorithms using different mapping functions. Based on the results of the evaluation, potential challenges are summarized and the future directions of gaze estimation are prospected.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 37 条
  • [21] Tan KH, 2002, SIXTH IEEE WORKSHOP ON APPLICATIONS OF COMPUTER VISION, PROCEEDINGS, P191, DOI 10.1109/ACV.2002.1182180
  • [22] Valenti R, 2008, PROC CVPR IEEE, P1452
  • [23] Valenti R, 2009, LECT NOTES COMPUT SC, V5716, P662, DOI 10.1007/978-3-642-04146-4_71
  • [24] Vilarino F., 2014, J EYE MOVEMENT RES, V7, P1
  • [25] Learning a gaze estimator with neighbor selection from large-scale synthetic eye images
    Wang, Yafei
    Zhao, Tongtong
    Ding, Xueyan
    Peng, Jinjia
    Bian, Jiming
    Fu, Xianping
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 139 : 41 - 49
  • [26] Appearance-based gaze estimation using deep features and random forest regression
    Wang, Yafei
    Shen, Tianyi
    Yuan, Guoliang
    Bian, Jiming
    Fu, Xianping
    [J]. KNOWLEDGE-BASED SYSTEMS, 2016, 110 : 293 - 301
  • [27] Williams O, 2006, P IEEE C CVPR, V1, P230, DOI DOI 10.1109/CVPR.2006.285
  • [28] Gaze-estimation for consumer-grade cameras using a Gaussian process latent variable model
    Wojke N.
    Hedrich J.
    Droege D.
    Paulus D.
    [J]. Pattern Recognition and Image Analysis, 2016, 26 (1) : 248 - 255
  • [29] Learning an Appearance-Based Gaze Estimator from One Million Synthesised Images
    Wood, Erroll
    Baltrusaitis, Tadas
    Morency, Louis-Philippe
    Robinson, Peter
    Bulling, Andreas
    [J]. 2016 ACM SYMPOSIUM ON EYE TRACKING RESEARCH & APPLICATIONS (ETRA 2016), 2016, : 131 - 138
  • [30] Gaze direction estimation using support vector machine with active appearance model
    Wu, Yi-Leh
    Yeh, Chun-Tsai
    Hung, Wei-Chih
    Tang, Cheng-Yuan
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2014, 70 (03) : 2037 - 2062