Appearance-Based Gaze Tracking: A Brief Review

被引:11
作者
Jiang, Jiaqi [1 ]
Zhou, Xiaolong [1 ,2 ]
Chan, Sixian [1 ]
Chen, Shengyong [1 ,3 ]
机构
[1] Zhejiang Univ Technol, Coll Comp Sci & Technol, Hangzhou, Peoples R China
[2] Quzhou Univ, Coll Elect & Informat Engn, Quzhou, Peoples R China
[3] Tianjin Univ Technol, Sch Comp Commun & Engn, Tianjin, Peoples R China
来源
INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PART VI | 2019年 / 11745卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Gaze tracking; HCI; Appearance-based; Mapping; DIRECTION;
D O I
10.1007/978-3-030-27529-7_53
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Human gaze tracking plays an important role in the field of Human-Computer Interaction. This paper presents a brief review on appearance-based gaze tracking. Based on the appearance of human eyes, input features can be classified into three categories according to the different ways of extracting human eyes features, namely, complete human eye image, pixel-based feature and 3D reconstruction image. The estimation process from human eye feature to fixation point mainly uses different mapping functions. In this paper, common mapping functions and related algorithms are described in detail: k-nearest neighbor (KNN), random forest (RF) regression, gaussian process (GP) regression, support vector machines (SVM) and artificial neural networks (ANN). This paper evaluates the performance of these gaze tracking algorithms using different mapping functions. Based on the results of the evaluation, potential challenges are summarized and the future directions of gaze estimation are prospected.
引用
收藏
页码:629 / 640
页数:12
相关论文
共 37 条
  • [1] Baluja S., 1993, P 6 INT C NEURAL INF, P753
  • [2] Appearance-Based Gaze Estimation via Evaluation-Guided Asymmetric Regression
    Cheng, Yihua
    Lu, Feng
    Zhang, Xucong
    [J]. COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 105 - 121
  • [3] Estimating Gaze Direction of Vehicle Drivers using a Smartphone Camera
    Chuang, Meng-Che
    Bala, Raja
    Bernal, Edgar A.
    Paul, Peter
    Burry, Aaron
    [J]. 2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2014, : 165 - +
  • [4] Pham C, 2018, ALCOHOL ALCOHOLISM, V53, P39, DOI [10.1093/alcalc/a, 10.1093/alcalc/agx087]
  • [5] RT-GENE: Real-Time Eye Gaze Estimation in Natural Environments
    Fischer, Tobias
    Chang, Hyung Jin
    Demiris, Yiannis
    [J]. COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 339 - 357
  • [6] General theory of remote gaze estimation using the pupil center and corneal reflections
    Guestrin, Elias Daniel
    Eizenman, Moshe
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2006, 53 (06) : 1124 - 1133
  • [7] Appearance-based gaze estimation under slight head motion
    Guo, Zhizhi
    Zhou, Qianxiang
    Liu, Zhongqi
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (02) : 2203 - 2222
  • [8] TabletGaze: dataset and analysis for unconstrained appearance-based gaze estimation in mobile tablets
    Huang, Qiong
    Veeraraghavan, Ashok
    Sabharwal, Ashutosh
    [J]. MACHINE VISION AND APPLICATIONS, 2017, 28 (5-6) : 445 - 461
  • [9] Huang YQ, 2011, 2011 9TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA 2011), P454, DOI 10.1109/WCICA.2011.5970555
  • [10] Unconstrained Gaze Estimation Using Random Forest Regression Voting
    Kacete, Amine
    Seguier, Renaud
    Collobert, Michel
    Royan, Jerome
    [J]. COMPUTER VISION - ACCV 2016, PT III, 2017, 10113 : 419 - 432