Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering

被引:151
|
作者
Wang, Zhengqi [1 ]
Wu, Honghui [1 ,2 ]
Wu, Yuan [1 ]
Huang, Hailong [1 ]
Zhu, Xiangyu [3 ]
Zhang, Yingjie [1 ]
Zhu, Huihui [1 ]
Yuan, Xiaoyuan [1 ]
Chen, Qiang [1 ]
Wang, Shudao [1 ]
Liu, Xiongjun [1 ]
Wang, Hui [1 ]
Jiang, Suihe [1 ]
Kim, Moon J. [3 ]
Lu, Zhaoping [1 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
基金
中国国家自然科学基金;
关键词
Refractory high-entropy alloy; Grain boundary engineering; Mechanical properties; Ductilization; INTERMETALLIC COMPOUND; NONMETALLIC IMPURITIES; ELECTRON LOCALIZATION; BORON; SEGREGATION; DUCTILITY; STRENGTH; SIGMA-5; REFINEMENT; STABILITY;
D O I
10.1016/j.mattod.2022.02.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Refractory high-entropy alloys (RHEAs), particularly NbMoTaW RHEAs, exhibit outstanding softening resistance and thermal stability at ultra-high temperatures, but suffer from room-temperature brittleness, which severely limits their processability and thus practical application. In this study, we successfully achieved large plasticity of >10%, along with high strength of >1750 MPa in the NbMoTaW RHEAs via grain boundary engineering with the addition of either metalloid B or C. It was revealed that the room-temperature brittleness of the as-cast NbMoTaW RHEA originates from the grain-boundary segregation of the oxygen contaminant which weakens grain-boundary cohesion. The doped small-sized metalloids preferentially replace oxygen at grain boundaries and promote stronger electronic interaction with the host metals, which effectively alleviates the grain boundary brittleness and changes the fracture morphology from intergranular fracture to transgranular fracture. Our findings not only shed light on the understanding of the embrittlement mechanism of RHEAs in general, but also offer a useful route for ductilization of brittle HEAs.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [31] Grain boundary segregation in a high entropy alloy
    Maldonado, A. J.
    Misra, K. P.
    Misra, R. D. K.
    MATERIALS TECHNOLOGY, 2023, 38 (01)
  • [32] Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
    Zhifeng Lei
    Xiongjun Liu
    Yuan Wu
    Hui Wang
    Suihe Jiang
    Shudao Wang
    Xidong Hui
    Yidong Wu
    Baptiste Gault
    Paraskevas Kontis
    Dierk Raabe
    Lin Gu
    Qinghua Zhang
    Houwen Chen
    Hongtao Wang
    Jiabin Liu
    Ke An
    Qiaoshi Zeng
    Tai-Gang Nieh
    Zhaoping Lu
    Nature, 2018, 563 : 546 - 550
  • [33] Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes
    Lei, Zhifeng
    Liu, Xiongjun
    Wu, Yuan
    Wang, Hui
    Jiang, Suihe
    Wang, Shudao
    Hui, Xidong
    Wu, Yidong
    Gault, Baptiste
    Kontis, Paraskevas
    Raabe, Dierk
    Gu, Lin
    Zhang, Qinghua
    Chen, Houwen
    Wang, Hongtao
    Liu, Jiabin
    An, Ke
    Zeng, Qiaoshi
    Nieh, Tai-Gang
    Lu, Zhaoping
    NATURE, 2018, 563 (7732) : 546 - +
  • [34] Precipitation suppression of refractory high-entropy alloys at intermediate temperature via adding oxygen
    Cui, Jiaxiang
    Dou, Bang
    Liu, Shien
    Zhou, Jingyan
    Cui, Ning
    Sun, Shihai
    Cai, Hongnian
    Wang, Liang
    Xue, Yunfei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1004
  • [35] Significantly enhancing elevated-temperature strength and ductility of a FeMnCoCr high-entropy alloy via grain boundary engineering: Exploring multi-deformation mechanisms
    You, Z. Y.
    Tang, Z. Y.
    Chu, F. B.
    Ding, H.
    Misra, R. D. K.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 886
  • [36] Engineering Microdomains of Oxides in High-Entropy Alloy Electrodes toward Efficient Oxygen Evolution
    Chen, Zheng-Jie
    Zhang, Tao
    Gao, Xiao-Yu
    Huang, Yong-Jiang
    Qin, Xiao-Hui
    Wang, Yi-Fan
    Zhao, Kai
    Peng, Xu
    Zhang, Cheng
    Liu, Lin
    Zeng, Ming-Hua
    Yu, Hai-Bin
    ADVANCED MATERIALS, 2021, 33 (33)
  • [37] Deformation-induced grain boundary segregation in a powder-metallurgy ultrafine-grained MoNbTaTiV refractory high-entropy alloy
    Liu, Qing
    Li, Xiaoguang
    Wang, Guofeng
    Zhu, Jun
    Zhan, Rui
    Liu, Yongkang
    Guan, Wei
    Liang, Hang
    Cui, Lei
    Liu, Yongchang
    HELIYON, 2024, 10 (17)
  • [38] Molecular dynamics studies of sluggish grain boundary diffusion in equiatomic FeNiCrCoCu high-entropy alloy
    Seoane, Axel
    Farkas, Diana
    Bai, Xian-Ming
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (21) : 8845 - 8861
  • [39] The Influence of Deformation and Heat Treatment on the Grain Boundary Character Distribution in CoCrFeNi High-Entropy Alloy
    Huo, Ran
    Du, Zhaoxin
    Cheng, Jun
    Sun, Baoan
    Gong, Tianhao
    Du, Xin
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2025,
  • [40] Molecular dynamics studies of sluggish grain boundary diffusion in equiatomic FeNiCrCoCu high-entropy alloy
    Axel Seoane
    Diana Farkas
    Xian-Ming Bai
    Journal of Materials Science, 2023, 58 : 8845 - 8861