Solving oxygen embrittlement of refractory high-entropy alloy via grain boundary engineering

被引:150
|
作者
Wang, Zhengqi [1 ]
Wu, Honghui [1 ,2 ]
Wu, Yuan [1 ]
Huang, Hailong [1 ]
Zhu, Xiangyu [3 ]
Zhang, Yingjie [1 ]
Zhu, Huihui [1 ]
Yuan, Xiaoyuan [1 ]
Chen, Qiang [1 ]
Wang, Shudao [1 ]
Liu, Xiongjun [1 ]
Wang, Hui [1 ]
Jiang, Suihe [1 ]
Kim, Moon J. [3 ]
Lu, Zhaoping [1 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] Univ Nebraska, Dept Chem, Lincoln, NE 68588 USA
[3] Univ Texas Dallas, Dept Mat Sci & Engn, Richardson, TX 75080 USA
基金
中国国家自然科学基金;
关键词
Refractory high-entropy alloy; Grain boundary engineering; Mechanical properties; Ductilization; INTERMETALLIC COMPOUND; NONMETALLIC IMPURITIES; ELECTRON LOCALIZATION; BORON; SEGREGATION; DUCTILITY; STRENGTH; SIGMA-5; REFINEMENT; STABILITY;
D O I
10.1016/j.mattod.2022.02.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Refractory high-entropy alloys (RHEAs), particularly NbMoTaW RHEAs, exhibit outstanding softening resistance and thermal stability at ultra-high temperatures, but suffer from room-temperature brittleness, which severely limits their processability and thus practical application. In this study, we successfully achieved large plasticity of >10%, along with high strength of >1750 MPa in the NbMoTaW RHEAs via grain boundary engineering with the addition of either metalloid B or C. It was revealed that the room-temperature brittleness of the as-cast NbMoTaW RHEA originates from the grain-boundary segregation of the oxygen contaminant which weakens grain-boundary cohesion. The doped small-sized metalloids preferentially replace oxygen at grain boundaries and promote stronger electronic interaction with the host metals, which effectively alleviates the grain boundary brittleness and changes the fracture morphology from intergranular fracture to transgranular fracture. Our findings not only shed light on the understanding of the embrittlement mechanism of RHEAs in general, but also offer a useful route for ductilization of brittle HEAs.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 50 条
  • [21] Effect of interstitial oxygen/nitrogen on mechanical and wear properties of TiZrHfNb refractory high-entropy alloy
    Jin, Chi
    Li, Xiaolin
    Kang, Junhong
    Li, Haozhe
    Wang, Haifeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
  • [22] A novel lightweight refractory high-entropy alloy
    Jiang, Wentao
    Wang, Tiantian
    Wang, Xiaohong
    Jiang, Bo
    Wang, Ye
    Wang, Xin
    Xu, Hongyu
    Hu, Maoliang
    Zhu, Dongdong
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2024, 33 : 9062 - 9066
  • [23] Super tensile ductility in an as-cast TiVNbTa refractory high-entropy alloy
    Guo, Chao
    Xing, Yuan
    Wu, Pan
    Qu, Ruitao
    Song, Kexing
    Liu, Feng
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2024, 34 (05) : 1076 - 1084
  • [24] Synergetic strengthening in HfMoNbTaTi refractory high-entropy alloy via disordered nanoscale phase and semicoherent refractory particle
    Yang, Cheng
    Bian, Huakang
    Aoyagi, Kenta
    Hayasaka, Yuichiro
    Yamanaka, Kenta
    Chiba, Akihiko
    MATERIALS & DESIGN, 2021, 212
  • [25] WReTaMo Refractory High-Entropy Alloy with High Strength at 1600 °C
    Wan, Yixing
    Wang, Qianqian
    Mo, Jinyong
    Zhang, Zhibin
    Wang, Xin
    Liang, Xiubing
    Shen, Baolong
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (02)
  • [26] Mechanical and electrical properties of NbMoTaW refractory high-entropy alloy thin films
    Kim, Hanuel
    Nam, Seungjin
    Roh, Aeran
    Son, Myungwoo
    Ham, Moon-Ho
    Kim, Jae-Hun
    Choi, Hyunjoo
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2019, 80 : 286 - 291
  • [27] Remarkably high fracture toughness of HfNbTaTiZr refractory high-entropy alloy
    Fan, X. J.
    Qu, R. T.
    Zhang, Z. F.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2022, 123 : 70 - 77
  • [28] Enhancement of hydrogen embrittlement resistance in CoCrFeNi high-entropy alloy through the addition of MoB elements
    Li, Xinfeng
    Cui, Yan
    Zhang, Jin
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 92 : 1306 - 1319
  • [29] A novel AlMoNbHfTi refractory high-entropy alloy with superior ductility
    Huang, Rui
    Wang, Wei
    Li, Tianxin
    Zhang, Lingkun
    Amar, Abdukadir
    Chen, Xiaohu
    Ren, Zheng
    Lu, Yiping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 940
  • [30] Microstructure and Mechanical Properties of a Refractory CoCrMoNbTi High-Entropy Alloy
    Zhang, Mina
    Zhou, Xianglin
    Li, Jinghao
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2017, 26 (08) : 3657 - 3665