A dual signal amplification strategy for the highly sensitive fluorescence detection of nucleic acids

被引:11
|
作者
Zhang, Jingjing [1 ,2 ]
Song, Chunyuan [1 ,2 ]
Zhou, Huiling [3 ]
Jia, Juan [3 ]
Dai, Yinna [3 ]
Cui, Daxiang [4 ]
Wang, Lianhui [1 ,2 ]
Weng, Lixing [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, IAM, Key Lab Organ Elect & Informat Displays, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, IAM, Jiangsu Key Lab Biosensors, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Sch Geog & Biol Informat, Nanjing 210023, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Thin Film & Microfabrciat Key Lab Adm Educ, Dept Instrument Sci & Engn,Inst Nano Biomed & Eng, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
DUPLEX-SPECIFIC NUCLEASE; HYBRIDIZATION CHAIN-REACTION; MICRORNA DETECTION; ULTRASENSITIVE DETECTION; ENZYME-FREE; ELECTROCHEMICAL BIOSENSOR; RECYCLING AMPLIFICATION; DNA PROBES; ONE-STEP; LABEL;
D O I
10.1039/c9an02183c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The development of convenient sensing probes and strategies for the highly sensitive and specific detection of biomolecules is greatly significant for the diagnosis of diseases. Herein, a dual signal amplification strategy comprising target-triggered recycling and duplex-specific nuclease (DSN)-mediated amplifications was designed and proposed for a highly sensitive fluorescence assay of nucleic acids. In this strategy, three special hairpin structured single-stranded DNAs (i.e., H1, H2 and H3) were designed, and target-triggered recycling was operated on H1-modified AuNPs (i.e., AuNP-H1 probes) in the presence of target DNA, H2 and H3 to form trefoil DNAs on AuNPs (i.e., AuNP-trefoil). DSN was then incubated with AuNP-trefoil to cleave the double-stranded trefoil DNAs, causing the ROX molecules labelled on H2 and H3 to fall off the AuNPs, which resulted in the recovery of the previous AuNP-quenched fluorescence signal of ROX. The sensing mechanism was confirmed by polyacrylamide gel electrophoresis and fluorescence characterizations, and the sensing strategy was optimized from several aspects, such as the MCH blocking time of the AuNP-H1 probes (20 min) and the concentration (0.3 U) and immobilization time (15 min) of DSN. The practicability of the probes and the dual signal amplification strategy was investigated by a fluorescence assay of target DNA in human serum. A good linear calibration curve from 50 fM to 100 pM was obtained with a low detection limit of 47.68 fM. The sensing strategy showed good specificity, which could efficiently distinguish the target DNA from the single-base mismatched (SM) and completely unmatched (UM) DNAs. The recovery values ranging from 91.85% to 106.3% with the relative standard deviations (RSD) less than 7.30% also illustrated the good reliability of the proposed sensing probes and strategy. The AuNP-H1 probes and dual signal amplification strategy provide highly effective diagnostic agents and method for the analysis of disease-related nucleic acid biomarkers at the molecular level for early disease detection.
引用
收藏
页码:1219 / 1226
页数:8
相关论文
共 50 条
  • [41] The dual nucleic acid amplification with dynamic light scattering strategy for ultrasensitive detection of Salmonella in milk
    Xu, Qian
    Xie, Guoyang
    Shi, Qiang
    Liu, Ju
    Zhou, Baoqing
    Tong, Ping
    Aguilar, Zoraida P.
    Xu, Hengyi
    MICROCHEMICAL JOURNAL, 2023, 184
  • [42] Development of a Fluorescence Immunoassay for Bisphenol a Detection Based on Functionalized Nanogold Signal Amplification Strategy
    Zhao, Wei
    Zhang, Chun-yan
    Li, Chun-gang
    Du, Ling-yun
    2016 INTERNATIONAL CONFERENCE ON ENVIRONMENTAL SCIENCE AND ENGINEERING (ESE 2016), 2016, : 358 - 362
  • [43] A Dual- signal Amplification Method for DNA Detection Based on Exonuclease III and Fluorescence Quenching Ability of MoS2 Nanosheet
    Liu Yu-Fei
    Xue Jin-Tao
    Yan Hui-Juan
    Yang Li-Juan
    Liu Wei
    Sun Xiang-De
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2017, 45 (03) : 303 - 307
  • [44] MOF-mediated dual energy transfer nanoprobe integrated with exonuclease III amplification strategy for highly sensitive detection of DNA
    Xing, Xiaojing
    Gao, Mengying
    Lei, Minglin
    Cheng, Kunqi
    Zhao, Yifan
    Du, Xianchao
    Zong, Luyi
    Qiu, Dongfang
    Liu, Xueguo
    ANALYTICAL METHODS, 2024, 16 (13) : 1916 - 1922
  • [45] Gold nanoparticle-based exonuclease III signal amplification for highly sensitive colorimetric detection of folate receptor
    Yang, Xinjian
    Gao, Zhiqiang
    NANOSCALE, 2014, 6 (06) : 3055 - 3058
  • [46] Homogeneous electrochemical aptasensor based on a dual amplification strategy for sensitive detection of profenofos residues
    Jiao, Yancui
    Fu, Jiayun
    Hou, Wenjie
    Shi, Zhaoqiang
    Guo, Yemin
    Sun, Xia
    Yang, Qingqing
    Li, Falan
    NEW JOURNAL OF CHEMISTRY, 2018, 42 (17) : 14642 - 14647
  • [47] Dual-mode biosensor with multiple signal amplification strategy for detection of Pseudomonas aeruginosa
    Zhang, Hehua
    Gao, Hongmin
    Ren, Xinshui
    Que, Longbin
    Gu, Xin
    Rong, Shengzhong
    Ma, Hongkun
    Ruan, Junbin
    Miao, Meng
    Qi, Xue
    Chang, Dong
    Pan, Hongzhi
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 410
  • [48] A Label-free and Highly Sensitive Fluorescence Strategy for Mercury Ion Detection Based on Exonuclease III-aided Recycling Amplification
    Ding, Baomiao
    Liu, Chenguang
    Wu, Qinghua
    Wang, Yun
    Li, Li
    Yang, Hualin
    ANALYTICAL SCIENCES, 2018, 34 (03) : 259 - 261
  • [49] A homogeneous fluorescent biosensing strategy for highly sensitive detection of DNA based on a programmed entropy-driven strand displacement reaction and DNAzyme for dual recycling amplification
    Li, Yujian
    Ding, Xiaojuan
    Li, Dandan
    Wu, Haiping
    Huang, Wei
    Ding, Shijia
    ANALYTICAL METHODS, 2019, 11 (12) : 1613 - 1619
  • [50] A highly sensitive surface plasmon resonance sensor for the detection of DNA and cancer cells by a target-triggered multiple signal amplification strategy
    He, Peng
    Qiao, Wenping
    Liu, Lijun
    Zhang, Shusheng
    CHEMICAL COMMUNICATIONS, 2014, 50 (73) : 10718 - 10721