A dual signal amplification strategy for the highly sensitive fluorescence detection of nucleic acids

被引:11
|
作者
Zhang, Jingjing [1 ,2 ]
Song, Chunyuan [1 ,2 ]
Zhou, Huiling [3 ]
Jia, Juan [3 ]
Dai, Yinna [3 ]
Cui, Daxiang [4 ]
Wang, Lianhui [1 ,2 ]
Weng, Lixing [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, IAM, Key Lab Organ Elect & Informat Displays, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Jiangsu Natl Synerget Innovat Ctr Adv Mat SICAM, IAM, Jiangsu Key Lab Biosensors, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Sch Geog & Biol Informat, Nanjing 210023, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Thin Film & Microfabrciat Key Lab Adm Educ, Dept Instrument Sci & Engn,Inst Nano Biomed & Eng, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
DUPLEX-SPECIFIC NUCLEASE; HYBRIDIZATION CHAIN-REACTION; MICRORNA DETECTION; ULTRASENSITIVE DETECTION; ENZYME-FREE; ELECTROCHEMICAL BIOSENSOR; RECYCLING AMPLIFICATION; DNA PROBES; ONE-STEP; LABEL;
D O I
10.1039/c9an02183c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The development of convenient sensing probes and strategies for the highly sensitive and specific detection of biomolecules is greatly significant for the diagnosis of diseases. Herein, a dual signal amplification strategy comprising target-triggered recycling and duplex-specific nuclease (DSN)-mediated amplifications was designed and proposed for a highly sensitive fluorescence assay of nucleic acids. In this strategy, three special hairpin structured single-stranded DNAs (i.e., H1, H2 and H3) were designed, and target-triggered recycling was operated on H1-modified AuNPs (i.e., AuNP-H1 probes) in the presence of target DNA, H2 and H3 to form trefoil DNAs on AuNPs (i.e., AuNP-trefoil). DSN was then incubated with AuNP-trefoil to cleave the double-stranded trefoil DNAs, causing the ROX molecules labelled on H2 and H3 to fall off the AuNPs, which resulted in the recovery of the previous AuNP-quenched fluorescence signal of ROX. The sensing mechanism was confirmed by polyacrylamide gel electrophoresis and fluorescence characterizations, and the sensing strategy was optimized from several aspects, such as the MCH blocking time of the AuNP-H1 probes (20 min) and the concentration (0.3 U) and immobilization time (15 min) of DSN. The practicability of the probes and the dual signal amplification strategy was investigated by a fluorescence assay of target DNA in human serum. A good linear calibration curve from 50 fM to 100 pM was obtained with a low detection limit of 47.68 fM. The sensing strategy showed good specificity, which could efficiently distinguish the target DNA from the single-base mismatched (SM) and completely unmatched (UM) DNAs. The recovery values ranging from 91.85% to 106.3% with the relative standard deviations (RSD) less than 7.30% also illustrated the good reliability of the proposed sensing probes and strategy. The AuNP-H1 probes and dual signal amplification strategy provide highly effective diagnostic agents and method for the analysis of disease-related nucleic acid biomarkers at the molecular level for early disease detection.
引用
收藏
页码:1219 / 1226
页数:8
相关论文
共 50 条
  • [1] A microchip electrophoresis-based fluorescence signal amplification strategy for highly sensitive detection of biomolecules
    Qin, Yingfeng
    Zhang, Liangliang
    Li, Shuting
    Zhao, Jingjin
    Huang, Yong
    Zhao, Shulin
    Liu, Yi-Ming
    CHEMICAL COMMUNICATIONS, 2017, 53 (02) : 455 - 458
  • [2] Electrochemical DNA Biosensors with Dual-Signal Amplification Strategy for Highly Sensitive HPV 16 Detection
    Yang, Yuxing
    Liao, Yazhen
    Qing, Yang
    Li, Haiyu
    Du, Jie
    SENSORS, 2023, 23 (17)
  • [3] A highly sensitive electrochemical aptasensor for detection of microcystin-LR based on a dual signal amplification strategy
    Liu, Xiaoqiang
    Tang, Yunfei
    Liu, Peipei
    Yang, Liwei
    Li, Lele
    Zhang, Qingyou
    Zhou, Yanmei
    Khan, Md. Zaved Hossain
    ANALYST, 2019, 144 (05) : 1671 - 1678
  • [4] Highly sensitive electrochemical detection of circulating EpCAM-positive tumor cells using a dual signal amplification strategy
    Hashkavayi, Ayemeh Bagheri
    Cha, Byung Seok
    Hwang, Sung Hyun
    Kim, Jimin
    Park, Ki Soo
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 343
  • [5] Isothermal Nucleic Acid Amplification Strategy by Cyclic Enzymatic Repairing for Highly Sensitive MicroRNA Detection
    Zhou, Dian-Ming
    Du, Wen-Fang
    Xi, Qiang
    Ge, Jia
    Jiang, Jian-Hui
    ANALYTICAL CHEMISTRY, 2014, 86 (14) : 6763 - 6767
  • [6] DNA Circuits-Based Signal Amplification for Ultrasensitive Nucleic Acids Detection
    Zhang, Zhikun
    Zhao, Wenmeng
    Hu, Cuixia
    Cao, Yapeng
    Yun, Jimmy
    Liu, Runjing
    Yuan, Longfei
    Liu, Yumin
    NANO, 2021, 16 (02)
  • [7] Dual-Signal Amplification Strategy for Sensitive MicroRNA Detection Based on Rolling Circle Amplification and Enzymatic Repairing Amplification
    Xiao, Fubing
    Liu, Jie
    Guo, Qinghui
    Du, Zhibo
    Li, Hong
    Sun, Chunlong
    Du, Wenfang
    ACS OMEGA, 2020, 5 (50): : 32738 - 32743
  • [8] Electrochemical aptasensor based on a dual signal amplification strategy of 1-AP-CNHs and ROP for highly sensitive detection of ERα
    Kong, Ziyan
    Wang, Yilong
    Wang, Zhendong
    Li, Xiaofei
    Yang, Huaixia
    Miao, Mingsan
    Guo, Liang
    BIOELECTROCHEMISTRY, 2024, 160
  • [9] Sandwich-Type Electrochemical Aptasensor for Highly Sensitive and Selective Detection of Pseudomonas Aeruginosa Bacteria Using a Dual Signal Amplification Strategy
    Abedi, Rokhsareh
    Raoof, Jahan Bakhsh
    Mohseni, Mojtaba
    Hashkavayi, Ayemeh Bagheri
    BIOELECTROCHEMISTRY, 2023, 150
  • [10] Enzyme-free dual-amplification strategy for the rapid, single-step detection of nucleic acids based on hybridization chain reaction initiated entropy driven circuit reaction
    Huang, Dongmei
    Li, Xinmin
    Shen, Bo
    Li, Jia
    Ding, Xiaojuan
    Zhou, Xiaoyan
    Guo, Bin
    Cheng, Wei
    Ding, Shijia
    SENSORS AND ACTUATORS B-CHEMICAL, 2018, 273 : 393 - 399