Flow compactifications of nondiscrete monoids, idempotents and Hindman's theorem

被引:0
|
作者
Ball, RN [1 ]
Hagler, JN [1 ]
机构
[1] Univ Denver, Dept Math, Denver, CO 80208 USA
关键词
flow; Stone-Cech compactification; Hindman's theorem;
D O I
10.1023/A:1026231202849
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the extension of the multiplication on a not-necessarily-discrete topological monoid to its flow compactification. We offer two applications. The first is a nondiscrete version of Hindman's Theorem, and the second is a characterization of the projective minimal and elementary flows in terms of idempotents of the flow compactification of the monoid.
引用
收藏
页码:319 / 342
页数:24
相关论文
共 26 条
  • [1] Flow Compactifications of Nondiscrete Monoids, Idempotents and Hindman's Theorem
    Richard N. Ball
    James N. Hagler
    Czechoslovak Mathematical Journal, 2003, 53 : 319 - 342
  • [2] Hindman’s theorem and choice
    E. Tachtsis
    Acta Mathematica Hungarica, 2022, 168 : 402 - 424
  • [3] HINDMAN'S THEOREM AND CHOICE
    Tachtsis, E.
    ACTA MATHEMATICA HUNGARICA, 2022, 168 (02) : 402 - 424
  • [4] Hindman's theorem and idempotent types
    Andrews, Uri
    Goldbring, Isaac
    SEMIGROUP FORUM, 2018, 97 (03) : 471 - 477
  • [5] Hindman’s theorem and idempotent types
    Uri Andrews
    Isaac Goldbring
    Semigroup Forum, 2018, 97 : 471 - 477
  • [6] Regressive versions of Hindman's theorem
    Carlucci, Lorenzo
    Mainardi, Leonardo
    ARCHIVE FOR MATHEMATICAL LOGIC, 2024, 63 (3-4) : 447 - 472
  • [7] Regressive versions of Hindman’s theorem
    Lorenzo Carlucci
    Leonardo Mainardi
    Archive for Mathematical Logic, 2024, 63 : 447 - 472
  • [8] Hindman's theorem in the hierarchy of choice principles
    Fernandez-Breton, David
    JOURNAL OF MATHEMATICAL LOGIC, 2024, 24 (01)
  • [9] A forcing notion related to Hindman’s theorem
    Luz María García-Ávila
    Archive for Mathematical Logic, 2015, 54 : 133 - 159
  • [10] A combinatorial proof of the Dense Hindman's Theorem
    Towsner, Henry
    DISCRETE MATHEMATICS, 2011, 311 (14) : 1380 - 1384