Machine learning for high-throughput experimental exploration of metal halide perovskites

被引:70
作者
Ahmadi, Mahshid [1 ]
Ziatdinov, Maxim [2 ,3 ]
Zhou, Yuanyuan [4 ,5 ]
Lass, Eric A. [1 ]
Kalinin, Sergei, V [2 ]
机构
[1] Univ Tennessee, Joint Inst Adv Mat, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
[3] Oak Ridge Natl Lab, Computat Sci & Engn Div, Oak Ridge, TN 37831 USA
[4] Hong Kong Baptist Univ, Dept Phys, Kowloon, Hong Kong, Peoples R China
[5] Hong Kong Baptist Univ, Smart Soc Lab, Kowloon, Hong Kong, Peoples R China
基金
美国国家科学基金会;
关键词
SOLAR-CELLS; CAUSAL INFERENCE; LEAD; STABILITY; IDENTIFICATION; SUBSTITUTION; DISCOVERY; DESIGN;
D O I
10.1016/j.joule.2021.10.001
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal halide perovskites (MHPs) have catapulted to the forefront of energy research due to the unique combination of high device performance, low materials cost, and facile solution processability. A remarkable merit of these materials is their compositional flexibility allowing for multiple substitutions at all crystallographic sites, and hence thousands of possible pure compounds and virtually a near-infinite number ofmulticomponent solid solutions. Harnessing the full potential of MHPs necessitates rapid exploration of multidimensional chemical space toward desired functionalities. Recent advances in laboratory automation, ranging from bespoke fully automated robotic labs to microfluidic systems and to pipetting robots, have enabled high-throughput experimental workflows for synthesizing MHPs. Here, we provide an overview of the state of the art in the automated MHP synthesis and existing methods for navigating multicomponent compositional space. We highlight the limitations and pitfalls of the existing strategies and formulate the requirements for necessary machine learning tools including causal and Bayesian methods, as well as strategies based on co-navigation of theoritical and experimental spaces. We argue that ultimately the goal of automated experiments is to simultaneously optimize the materials synthesis and refine the theoretical models that underpin target functionalities. Furthermore, the near-term development of automated experimentation will not lead to the full exclusion of human operator but rather automatization of repetitive operations, deferring human role to high-level slow decisions. We also discuss the emerging opportunities leveraging machine learning-guided automated synthesis to the development of high-performance perovskite optoelectronics.
引用
收藏
页码:2797 / 2822
页数:26
相关论文
共 130 条
[1]   Self-Driven Multistep Quantum Dot Synthesis Enabled by Autonomous Robotic Experimentation in Flow [J].
Abdel-Latif, Kameel ;
Epps, Robert W. ;
Bateni, Fazel ;
Han, Suyong ;
Reyes, Kristofer G. ;
Abolhasani, Milad .
ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (02)
[2]  
Aglietti V., 2020, Advances in Neural Information Processing Systems, P6293
[3]  
Aglietti V, 2020, PR MACH LEARN RES, V108, P3155
[4]   A Review on Organic-Inorganic Halide Perovskite Photodetectors: Device Engineering and Fundamental Physics [J].
Ahmadi, Mahshid ;
Wu, Ting ;
Hu, Bin .
ADVANCED MATERIALS, 2017, 29 (41)
[5]   Convergence of multiple synthetic paradigms in a universally programmable chemical synthesis machine [J].
Angelone, Davide ;
Hammer, Alexander J. S. ;
Rohrbach, Simon ;
Krambeck, Stefanie ;
Granda, Jaroslaw M. ;
Wolf, Jakob ;
Zalesskiy, Sergey ;
Chisholm, Greig ;
Cronin, Leroy .
NATURE CHEMISTRY, 2021, 13 (01) :63-+
[6]   Planar perovskite solar cells with long-term stability using ionic liquid additives [J].
Bai, Sai ;
Da, Peimei ;
Li, Cheng ;
Wang, Zhiping ;
Yuan, Zhongcheng ;
Fu, Fan ;
Kawecki, Maciej ;
Liu, Xianjie ;
Sakai, Nobuya ;
Wang, Jacob Tse-Wei ;
Huettner, Sven ;
Buecheler, Stephan ;
Fahlman, Mats ;
Gao, Feng ;
Snaith, Henry J. .
NATURE, 2019, 571 (7764) :245-+
[7]   Causal inference and the data-fusion problem [J].
Bareinboim, Elias ;
Pearl, Judea .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (27) :7345-7352
[8]   New tolerance factor to predict the stability of perovskite oxides and halides [J].
Bartel, Christopher J. ;
Sutton, Christopher ;
Goldsmith, Bryan R. ;
Ouyang, Runhai ;
Musgrave, Charles B. ;
Ghiringhelli, Luca M. ;
Scheffler, Matthias .
SCIENCE ADVANCES, 2019, 5 (02)
[9]   Efficient luminescent solar cells based on tailored mixed-cation perovskites [J].
Bi, Dongqin ;
Tress, Wolfgang ;
Dar, M. Ibrahim ;
Gao, Peng ;
Luo, Jingshan ;
Renevier, Clementine ;
Schenk, Kurt ;
Abate, Antonio ;
Giordano, Fabrizio ;
Baena, Juan-Pablo Correa ;
Decoppet, Jean-David ;
Zakeeruddin, Shaik Mohammed ;
Nazeeruddin, Mohammad Khaja ;
Gratzel, Michael ;
Hagfeldt, Anders .
SCIENCE ADVANCES, 2016, 2 (01)
[10]   A mobile robotic chemist [J].
Burger, Benjamin ;
Maffettone, Phillip M. ;
Gusev, Vladimir V. ;
Aitchison, Catherine M. ;
Bai, Yang ;
Wang, Xiaoyan ;
Li, Xiaobo ;
Alston, Ben M. ;
Li, Buyi ;
Clowes, Rob ;
Rankin, Nicola ;
Harris, Brandon ;
Sprick, Reiner Sebastian ;
Cooper, Andrew I. .
NATURE, 2020, 583 (7815) :237-+