Configuring a VR simulator for the evaluation of advanced human-machine interfaces for hydraulic excavators

被引:8
|
作者
Morosi, Federico [1 ]
Caruso, Giandomenico [1 ]
机构
[1] Politecn Milan, Mech Engn Dept, Milan, Italy
关键词
Excavator coordinated control; Virtual reality simulator; Haptic control; Human-machine interface; Multi-sensory feedbacks; OF-THE-ART; VIRTUAL-REALITY; ENVIRONMENT; TRENDS; MODEL;
D O I
10.1007/s10055-021-00598-z
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This study is aimed at evaluating the impact of different technical solutions of a virtual reality simulator to support the assessment of advanced human-machine interfaces for hydraulic excavator based on a new coordinated control paradigm and haptic feedbacks. By mimicking the end-effector movements, the control is conceived to speed up the learning process for novice operators and to reduce the mental overload on those already trained. The design of the device can fail if ergonomics, usability and performance are not grounded on realistic simulations where the combination of visual, auditory and haptic feedbacks make the users feel like being in a real environment rather than a computer-generated one. For this reason, a testing campaign involving 10 subjects was designed to discriminate the optimal set-up for the hardware to ensure a higher immersion into the VR experience. Both the audio-video configurations of the simulator (head-mounted display and surround system vs. monitor and embedded speakers) and the two types of haptic feedback for the soil-bucket interaction (contact vs. shaker) are compared in three different scenarios. The performance of both the users and simulator are evaluated by processing subjective and objective data. The results show how the immersive set-up improves the users' efficiency and ergonomics without putting any extra mental or physical effort on them, while the preferred haptic feedback (contact) is not the more efficient one (shaker).
引用
收藏
页码:801 / 816
页数:16
相关论文
共 50 条
  • [1] Configuring a VR simulator for the evaluation of advanced human–machine interfaces for hydraulic excavators
    Federico Morosi
    Giandomenico Caruso
    Virtual Reality, 2022, 26 : 801 - 816
  • [2] Learning Algorithms for Human-Machine Interfaces
    Danziger, Zachary
    Fishbach, Alon
    Mussa-Ivaldi, Ferdinando A.
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2009, 56 (05) : 1502 - 1511
  • [3] External human-machine interfaces: Gimmick or necessity?
    de Winter, Joost
    Dodou, Dimitra
    TRANSPORTATION RESEARCH INTERDISCIPLINARY PERSPECTIVES, 2022, 15
  • [4] Human-Machine Interfaces for Robotic System Control
    Roibu, Horatiu
    Popescu, Dorin
    Abagiu, Marian-Marcel
    Bizdoaca, Nicu-George
    2018 INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL ELECTRICITY (ICATE), 2018,
  • [5] Changes in Usability Evaluation of Human-Machine Interfaces from the Perspective of Automated Vehicles
    Su, Yating
    Tan, Zhengyu
    Dai, Ningyi
    ADVANCES IN USABILITY, USER EXPERIENCE, WEARABLE AND ASSISTIVE TECHNOLOGY, AHFE 2021, 2021, 275 : 886 - 893
  • [6] Evaluation of hydraulic excavator Human-Machine Interface concepts using NASA TLX
    Akyeampong, Joseph
    Udoka, Silvanus
    Caruso, Giandomenico
    Bordegoni, Monica
    INTERNATIONAL JOURNAL OF INDUSTRIAL ERGONOMICS, 2014, 44 (03) : 374 - 382
  • [7] EXG Wearable Human-Machine Interface for Natural Multimodal Interaction in VR Environment
    Wang, Ker-Jiun
    Liu, Quanbo
    Vhasure, Soumya
    Liu, Quanfeng
    Zheng, Caroline Yan
    Thakur, Prakash
    24TH ACM SYMPOSIUM ON VIRTUAL REALITY SOFTWARE AND TECHNOLOGY (VRST 2018), 2018,
  • [8] Human-Machine Interfaces: A Review for Autonomous Electric Vehicles
    Mandujano-Granillo, Jesus A.
    Candela-Leal, Milton O.
    Ortiz-Vazquez, Juan J.
    Ramirez-Moreno, Mauricio A.
    Tudon-Martinez, Juan C.
    Felix-Herran, Luis C.
    Galvan-Galvan, Alfredo
    Lozoya-Santos, Jorge De J.
    IEEE ACCESS, 2024, 12 : 121635 - 121658
  • [9] Cognitive Human-Machine Interfaces and Interactions for Unmanned Aircraft
    Lim, Yixiang
    Ramasamy, Subramanian
    Gardi, Alessandro
    Kistan, Trevor
    Sabatini, Roberto
    JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2018, 91 (3-4) : 755 - 774
  • [10] A Lightweight Ultrasound Probe for Wearable Human-Machine Interfaces
    Yan, Jipeng
    Yang, Xingchen
    Sun, Xueli
    Chen, Zhenfeng
    Liu, Honghai
    IEEE SENSORS JOURNAL, 2019, 19 (14) : 5895 - 5903