Theoretical analysis of the generalized finite difference method

被引:46
作者
Zheng, Zhiyin [1 ]
Li, Xiaolin [1 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 400047, Peoples R China
基金
中国国家自然科学基金;
关键词
Meshlesscollocationmethod; Generalizedfinitedifferencemethod; Stability; Conditionnumber; Errorestimates; APPROXIMATION; 2D;
D O I
10.1016/j.camwa.2022.06.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The generalized finite difference method (GFDM) is a typical meshless collocation method based on the Taylor series expansion and the moving least squares technique. In this paper, we first provide theoretical results of the meshless function approximation in the GFDM. Properties, stability and error estimation of the approximation are studied theoretically, and a stabilized approximation is proposed by revising the computational formulas of the original approximation. Then, we provide theoretical results consisting of error bound and condition number of the GFDM. Numerical results are finally provided to confirm these theoretical results.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 34 条
[1]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[2]   Solving a reaction-diffusion system with chemotaxis and non-local terms using Generalized Finite Difference Method. Study of the convergence [J].
Benito, J. J. ;
Garcia, A. ;
Gavete, L. ;
Negreanu, M. ;
Urena, F. ;
Vargas, A. M. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
[3]   Solving a chemotaxis-haptotaxis system in 2D using Generalized Finite Difference Method [J].
Benito, J. J. ;
Garcia, A. ;
Gavete, L. ;
Negreanu, M. ;
Urena, F. ;
Vargas, A. M. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2020, 80 (05) :762-777
[4]   Influence of several factors in the generalized finite difference method [J].
Benito, JJ ;
Ureña, F ;
Gavete, L .
APPLIED MATHEMATICAL MODELLING, 2001, 25 (12) :1039-1053
[5]  
Brenner S.C., 1996, The Mathematical Theory of Finite Element Methods
[6]   Error estimates for the finite point method [J].
Cheng, Rongjun ;
Cheng, Yumin .
APPLIED NUMERICAL MATHEMATICS, 2008, 58 (06) :884-898
[7]  
Cheng YM, 2015, Meshless methods
[8]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO
[9]   Improvements of generalized finite difference method and comparison with other meshless method [J].
Gavete, L ;
Gavete, ML ;
Benito, JJ .
APPLIED MATHEMATICAL MODELLING, 2003, 27 (10) :831-847
[10]   The generalized finite difference method for long-time dynamic modeling of three-dimensional coupled thermoelasticity problems [J].
Gu, Yan ;
Qu, Wenzhen ;
Chen, Wen ;
Song, Lina ;
Zhang, Chuanzeng .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 384 :42-59