Optimal designs for estimating individual coefficients in polynomial regression with no intercept

被引:2
|
作者
Dette, Holger [1 ]
Melas, Viatcheslav B. [2 ]
Shpilev, Petr [2 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
[2] St Petersburg State Univ, Math & Mech Fac, St Petersburg, Russia
基金
俄罗斯基础研究基金会;
关键词
Polynomial regression; c-optimal design; Chebyshev system; MODELS;
D O I
10.1016/j.spl.2019.108636
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We identify optimal designs for estimating individual coefficients in a polynomial regression with no intercept. Here the regression functions do not form a Chebyshev system such that the seminal results of Studden (1968) characterizing c-optimal designs are not applicable. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] A general approach to D-optimal designs for weighted univariate polynomial regression models
    Dette, Holger
    Trampisch, Matthias
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2010, 39 (01) : 1 - 26
  • [22] Optimal characteristic designs for polynomial models
    Rodríguez-Díaz, JM
    López-Fidalgo, J
    OPTIMUM DESIGN 2000, 2001, 51 : 123 - 130
  • [23] A note on D-optimal designs for models with and without an intercept
    Kim-Hung Li
    Tai-Shing Lau
    Chongqi Zhang
    Statistical Papers, 2005, 46 : 451 - 458
  • [24] An algebraic construction of minimally-supported D-Optimal designs for weighted polynomial regression
    Chang, Fu-Chuen
    Jiang, Bo-Jung
    STATISTICA SINICA, 2007, 17 (03) : 1005 - 1021
  • [25] Rejoinder: A general approach to D-optimal designs for weighted univariate polynomial regression models
    Holger Dette
    Matthias Trampisch
    Journal of the Korean Statistical Society, 2010, 39 : 39 - 42
  • [26] A note on D-optimal designs for models with and without an intercept
    Li, KH
    Lau, TS
    Zhang, CQ
    STATISTICAL PAPERS, 2005, 46 (03) : 451 - 458
  • [27] Estimating Parameters of the Induction Machine by the Polynomial Regression
    Wu, Rong-Ching
    Tseng, Yuan-Wei
    Chen, Cheng-Yi
    APPLIED SCIENCES-BASEL, 2018, 8 (07):
  • [28] Optimal designs for regression with spherical data
    Dette, Holger
    Konstantinou, Maria
    Schorning, Kirsten
    Goesmann, Josua
    ELECTRONIC JOURNAL OF STATISTICS, 2019, 13 (01): : 361 - 390
  • [30] Near optimal polynomial regression on norming meshes
    Bos, Len
    Piazzon, Federico
    Vianello, Marco
    2019 13TH INTERNATIONAL CONFERENCE ON SAMPLING THEORY AND APPLICATIONS (SAMPTA), 2019,