Integration of Lanthanide-Transition-Metal Clusters onto CdS Surfaces for Photocatalytic Hydrogen Evolution

被引:128
作者
Chen, Rong [1 ,2 ]
Yan, Zhi-Hao [1 ,2 ]
Kong, Xiang-Jian [1 ,2 ]
Long, La-Sheng [1 ,2 ]
Zheng, Lan-Sun [1 ,2 ]
机构
[1] Xiamen Univ, Coll Chem & Chem Engn, Collaborat Innovat Ctr Chem Energy Mat, State Key Lab Phys Chem Solid Surface, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Coll Chem & Chem Engn, Dept Chem, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
clusters (4f-3d); hydrogen evolution; cadmium sulfide; photocatalysis; GOLD NANOCLUSTERS; WATER OXIDATION; SEMICONDUCTOR; GENERATION; H-2;
D O I
10.1002/anie.201811211
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heterometallic lanthanide-transition-metal (4f-3d) clusters with well-defined crystal structures integrate multiple metal centers and provide a platform for achieving synergistic catalytic effects. Herein, we present a strategy for enhanced hydrogen evolution by loading atomically precise 4f-3d clusters Ln(52)Ni(56) on a CdS photoabsorber surface. Interestingly, some Ni2+ ions in the clusters Ln(52)Ni(56) were exchanged by the Cd2+ to form Ln(52)Ni(56-x)Cd(x)/CdS composites. Photocatalytic studies show that the efficient synergistic multipath charge separation and transfer from CdS to the Eu52Ni56-xCdx cluster enable high visible-light-driven hydrogen evolution at 25353molh(-1)g(-1). This work provides the strategy to design highly active photocatalytic hydrogen evolution catalysts by assembling heterometallic 4f-3d clusters on semiconductor materials.
引用
收藏
页码:16796 / 16800
页数:5
相关论文
共 33 条
[1]   2D Hybrid Nanostructure of Reduced Graphene Oxide-CdS Nanosheet for Enhanced Photocatalysis [J].
Bera, Rajesh ;
Kundu, Simanta ;
Patra, Amitava .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (24) :13251-13259
[2]  
Brad A.J., 2000, Electrochemical Methods: Fundamentals and Applications, V2nd
[3]   A Mixed-Ligand Approach for a Gigantic and Hollow Heterometallic Cage {Ni64RE96} for Gas Separation and Magnetic Cooling Applications [J].
Chen, Wei-Peng ;
Liao, Pei-Qin ;
Yu, Youzhu ;
Zheng, Zhiping ;
Chen, Xiao-Ming ;
Zheng, Yan-Zhen .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (32) :9375-9379
[4]  
Chen WP, 2016, Angew Chem, V128, P9521
[5]   CdS-Based photocatalysts [J].
Cheng, Lei ;
Xiang, Quanjun ;
Liao, Yulong ;
Zhang, Huaiwu .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (06) :1362-1391
[6]   A Noble-Metal-Free CdS/Ni3S2@C Nanocomposite for Efficient Visible-Light-Driven Photocatalysis [J].
Cui, Yu ;
Pan, Yun-Xiang ;
Qin, Haili ;
Cong, Huai-Ping ;
Yu, Shu-Hong .
SMALL METHODS, 2018, 2 (12)
[7]   3d-4f {Co3IILn(OR)4} Cubanes as Bio-lnspired Water Oxidation Catalysts [J].
Evangelisti, Fabio ;
More, Rene ;
Hodel, Florian ;
Luber, Sandra ;
Patzke, Greta Ricarda .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (34) :11076-11084
[8]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[9]   Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting [J].
Hisatomi, Takashi ;
Kubota, Jun ;
Domen, Kazunari .
CHEMICAL SOCIETY REVIEWS, 2014, 43 (22) :7520-7535
[10]   Metal/Semiconductor Hybrid Nanostructures for Plasmon-Enhanced Applications [J].
Jiang, Ruibin ;
Li, Benxia ;
Fang, Caihong ;
Wang, Jianfang .
ADVANCED MATERIALS, 2014, 26 (31) :5274-5309