The nonextensive gas: a kinetic approach

被引:27
作者
Lima, JAS
Silva, R [1 ]
机构
[1] Univ Fed Rio Grande do Norte, BR-59610210 Mossoro, RN, Brazil
[2] Univ Sao Paulo, IAG, Dept Astron, BR-05508 Sao Paulo, Brazil
[3] Univ Fed Rio Grande do Norte, Dept Fis, BR-59072970 Natal, RN, Brazil
关键词
kinetic theory; nonextensivity; ideal gas; specific heats;
D O I
10.1016/j.physleta.2005.02.045
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss a kinetic nonextensive generalization of the Maxwellian ideal gas. The analysis rests on two basic assumptions: (i) instead of the standard Gaussian form, the q-gas is described by a power-law velocity distribution as suggested in the nonextensive Tsallis' framework (ii) the q-nonextensive generalization of the Boltzmann entropy formula governs the behavior of the q-gas. In this context, we show that the pressure and the internal energy are kinetically modified, but the general equation of state, PV = 2U/3, remains valid. The adiabatic index is now a function of the nonextensive parameter, gamma = C-p/C-V = 5/3q. However, the standard expression relating the specific heats (at constant pressure and volume) with the coefficient of expansion and the isothermal compressibility, C-P - C-V = TV alpha(2)/kappa(T), is not modified. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:272 / 276
页数:5
相关论文
共 22 条
  • [1] Correlation induced by Tsallis' nonextensivity
    Abe, S
    [J]. PHYSICA A, 1999, 269 (2-4): : 403 - 409
  • [2] Thermodynamic limit of a classical gas in nonextensive statistical mechanics: Negative specific heat and polytropism
    Abe, S
    [J]. PHYSICS LETTERS A, 1999, 263 (4-6) : 424 - 429
  • [3] Abe S., 2001, NONEXTENSIVE STAT ME
  • [4] Nonextensive thermodynamic relations
    Abe, SY
    Martínez, S
    Pennini, F
    Plastino, A
    [J]. PHYSICS LETTERS A, 2001, 281 (2-3) : 126 - 130
  • [5] Boghosian BM, 1999, BRAZ J PHYS, V29, P91, DOI 10.1590/S0103-97331999000100009
  • [6] On the statistics of an ideal gas with mass fluctuations and the Boltzman ergodic theorem: The combined Boltzman-Tsallis statistics
    Botelho, LCL
    [J]. MODERN PHYSICS LETTERS B, 2003, 17 (13-14): : 733 - 741
  • [7] Callen HB., 1985, THERMODYNAMICS INTRO, V2, DOI 10.1119/1.19071
  • [8] Gell-Mann M., 2004, Nonextensive Entropy: Interdisciplinary Applications
  • [9] Huang K., 1987, STAT MECH
  • [10] Plasma oscillations and nonextensive statistics
    Lima, JAS
    Silva, R
    Santos, J
    [J]. PHYSICAL REVIEW E, 2000, 61 (03): : 3260 - 3263