CRAMER-RAO BOUNDS FOR PARTICLE SIZE DISTRIBUTION ESTIMATION FROM MULTIANGLE DYNAMIC LIGHT SCATTERING

被引:0
|
作者
Boualem, Abdelbassit [1 ]
Jabloun, Meryem [1 ]
Ravier, Philippe [1 ]
Naiim, Marie [2 ]
Jalocha, Alain [2 ]
机构
[1] Univ Orleans, PRISME, 12 Rue Blois, F-45067 Orleans, France
[2] CILAS, F-45063 Orleans, France
来源
2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2015年
关键词
Particle Size Distribution; Multiangle Dynamic Light Scattering; Cramer-Rao Bound; Inverse Problem; Bayesian Inference; CORRELATION SPECTROSCOPY DATA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We derive the Cramer-Rao lower bounds (CRB) for parametric estimation of the number-weighted particle size distribution (PSD) from multiangle Dynamic Light Scattering (DLS) measurements. The CRB is a useful statistical tool to investigate the optimality of the PSD estimators. In the present paper, a Gaussian mixture (GM) model of the multimodal PSD is assumed and the associated Fisher information matrix (FIM) is determined, The usefulness of multiangle DLS in significantly decreasing the CRB is demonstrated. The mean square error (MSE) of the PSD GM model parameters estimation by the Bayesian inference method proposed in [1] is compared to the derived CRB for a simulated monomodal PSD. Results show that the MSE achieves the derived CRBs for the unbiased estimators of the PSD GM model parameters.
引用
收藏
页码:2221 / 2225
页数:5
相关论文
共 50 条
  • [41] Cramer-Rao Bounds for SNR Estimation of Oversampled Linearly Modulated Signals
    Lopez-Valcarce, Roberto
    Villares, Javier
    Riba, Jaume
    Gappmair, Wilfried
    Mosquera, Carlos
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (07) : 1675 - 1683
  • [42] Cramer-Rao lower bounds for time delay and Doppler shift estimation
    Zhang, WQ
    Tao, R
    CHINESE JOURNAL OF ELECTRONICS, 2005, 14 (04): : 635 - 638
  • [43] Cramer-Rao Bounds for spectral parametric estimation with compressive multiband architectures
    Marnat, Marguerite
    Pelissier, Michael
    Ros, Laurent
    Michel, Olivier
    DIGITAL SIGNAL PROCESSING, 2021, 111
  • [44] On the direction estimation Cramer-Rao bounds in the presence of uncorrelated unknown noise
    Matveyev, AL
    Gershman, AB
    Böhme, JF
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1999, 18 (05) : 479 - 487
  • [45] CRAMER-RAO BOUNDS AN ANGLE ESTIMATION WITH A 2-DIMENSIONAL ARRAY
    MIRKIN, AN
    SIBUL, LH
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1991, 39 (02) : 515 - 517
  • [46] Cramer-rao bounds for FOA and TOA estimation from Galileo search and rescue signal
    Wang K.
    Wu S.-L.
    Han Y.-T.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2011, 33 (09): : 2033 - 2038
  • [47] Posterior Cramer-Rao Bounds for Nonlinear Dynamic System with Colored Noises
    Wang, Zhiguo
    Shen, Xiaojing
    Zhu, Yunmin
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2019, 32 (06) : 1526 - 1543
  • [48] A recursive regularization algorithm for estimating, the particle size distribution from multiangle dynamic light scattering measurements
    Li, Lei
    Yang, Kecheng
    Li, Wei
    Wang, Wanyan
    Guo, Wenping
    Xia, Min
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2016, 178 : 244 - 254
  • [49] Setting sample size in particle filters using Cramer-Rao bound
    Simandl, M
    Straka, O
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 681 - 686
  • [50] Asymptotic and modified Cramer-Rao bounds for frequency estimation in parallel fading channels
    Zakharov, YV
    Baronkin, VM
    Pearce, DAJ
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (04) : 1554 - 1557