CRAMER-RAO BOUNDS FOR PARTICLE SIZE DISTRIBUTION ESTIMATION FROM MULTIANGLE DYNAMIC LIGHT SCATTERING

被引:0
|
作者
Boualem, Abdelbassit [1 ]
Jabloun, Meryem [1 ]
Ravier, Philippe [1 ]
Naiim, Marie [2 ]
Jalocha, Alain [2 ]
机构
[1] Univ Orleans, PRISME, 12 Rue Blois, F-45067 Orleans, France
[2] CILAS, F-45063 Orleans, France
来源
2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2015年
关键词
Particle Size Distribution; Multiangle Dynamic Light Scattering; Cramer-Rao Bound; Inverse Problem; Bayesian Inference; CORRELATION SPECTROSCOPY DATA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We derive the Cramer-Rao lower bounds (CRB) for parametric estimation of the number-weighted particle size distribution (PSD) from multiangle Dynamic Light Scattering (DLS) measurements. The CRB is a useful statistical tool to investigate the optimality of the PSD estimators. In the present paper, a Gaussian mixture (GM) model of the multimodal PSD is assumed and the associated Fisher information matrix (FIM) is determined, The usefulness of multiangle DLS in significantly decreasing the CRB is demonstrated. The mean square error (MSE) of the PSD GM model parameters estimation by the Bayesian inference method proposed in [1] is compared to the derived CRB for a simulated monomodal PSD. Results show that the MSE achieves the derived CRBs for the unbiased estimators of the PSD GM model parameters.
引用
收藏
页码:2221 / 2225
页数:5
相关论文
共 50 条
  • [31] Cramer-Rao bounds for estimation of turbulence-induced wavefront aberrations
    Schulz, TJ
    Sun, W
    Roggemann, MC
    PROPAGATION AND IMAGING THROUGH THE ATMOSPHERE III, 1999, 3763 : 23 - 28
  • [32] The Estimation Fusion and Cramer-Rao Bounds for Nonlinear Systems with Uncertain Observations
    Wang, Ping
    Wang, Zhiguo
    Shen, Xiaojing
    Zhu, Yunmin
    2017 20TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2017, : 346 - 353
  • [33] CRAMER-RAO BOUNDS FOR PARAMETER ESTIMATION OF PHASE-CODING SIGNALS
    Huang Chunlin Jiang Wengli Zhou Yiyu (School of Electronic Science and Engineering
    Journal of Electronics(China), 2005, (01) : 1 - 8
  • [34] Conditional Cramer-Rao Lower Bounds for DOA Estimation and Array Calibration
    Liu, Zhang-Meng
    IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (03) : 361 - 364
  • [35] Cramer-Rao Bounds of key parameters estimation for Galileo SAR signal
    Wang, Kun
    Wu, Si-Liang
    Tian, Jing
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2011, 39 (12): : 2761 - 2767
  • [36] Bayesian and Hybrid Cramer-Rao Bounds for QAM Dynamical Phase Estimation
    Yang, J.
    Geller, B.
    Wei, A.
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3297 - +
  • [37] Cramer-Rao lower bounds for the time delay estimation of UWB signals
    Zhang, J
    Kennedy, RA
    Abhayapala, TD
    2004 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, VOLS 1-7, 2004, : 3424 - 3428
  • [38] Estimation of parameters of a laser Doppler velocimeter and their Cramer-Rao lower bounds
    Zhou, Jian
    Long, Xingwu
    APPLIED OPTICS, 2011, 50 (23) : 4594 - 4603
  • [39] Cramer-Rao Bounds for Direction Estimation in the Presence of Circular and Noncirular Signals
    Choi, Yang-Ho
    IEEE ACCESS, 2020, 8 : 177395 - 177404
  • [40] Cramer-Rao Bounds of Localization Estimation for Integrated Radar and Communication System
    Tian, Tuanwei
    Du, Xiaolin
    Li, Guchong
    IEEE ACCESS, 2020, 8 : 105852 - 105863