CRAMER-RAO BOUNDS FOR PARTICLE SIZE DISTRIBUTION ESTIMATION FROM MULTIANGLE DYNAMIC LIGHT SCATTERING

被引:0
|
作者
Boualem, Abdelbassit [1 ]
Jabloun, Meryem [1 ]
Ravier, Philippe [1 ]
Naiim, Marie [2 ]
Jalocha, Alain [2 ]
机构
[1] Univ Orleans, PRISME, 12 Rue Blois, F-45067 Orleans, France
[2] CILAS, F-45063 Orleans, France
来源
2015 23RD EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO) | 2015年
关键词
Particle Size Distribution; Multiangle Dynamic Light Scattering; Cramer-Rao Bound; Inverse Problem; Bayesian Inference; CORRELATION SPECTROSCOPY DATA;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We derive the Cramer-Rao lower bounds (CRB) for parametric estimation of the number-weighted particle size distribution (PSD) from multiangle Dynamic Light Scattering (DLS) measurements. The CRB is a useful statistical tool to investigate the optimality of the PSD estimators. In the present paper, a Gaussian mixture (GM) model of the multimodal PSD is assumed and the associated Fisher information matrix (FIM) is determined, The usefulness of multiangle DLS in significantly decreasing the CRB is demonstrated. The mean square error (MSE) of the PSD GM model parameters estimation by the Bayesian inference method proposed in [1] is compared to the derived CRB for a simulated monomodal PSD. Results show that the MSE achieves the derived CRBs for the unbiased estimators of the PSD GM model parameters.
引用
收藏
页码:2221 / 2225
页数:5
相关论文
共 50 条
  • [11] Cramer-Rao bounds for circadian rhythm parameter estimation
    Zarowski, C
    Kropyvnytskyy, I
    IEEE CCEC 2002: CANADIAN CONFERENCE ON ELECTRCIAL AND COMPUTER ENGINEERING, VOLS 1-3, CONFERENCE PROCEEDINGS, 2002, : 1083 - 1086
  • [12] Cramer-Rao bounds in the parametric estimation of fading radiotransmission channels
    Gini, F
    Luise, M
    Reggiannini, R
    IEEE TRANSACTIONS ON COMMUNICATIONS, 1998, 46 (10) : 1390 - 1398
  • [13] Cramer-Rao bounds for shallow water environmental parameter estimation
    Daly, PM
    Baggeroer, AB
    OCEANS '97 MTS/IEEE CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 1997, : 430 - 435
  • [14] Cramer-Rao bounds for parametric shape estimation in inverse problems
    Ye, JC
    Bresler, Y
    Moulin, P
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (01) : 71 - 84
  • [15] Posterior Cramer-Rao bounds for state estimation with quantized measurement
    Duan, Zhansheng
    Jilkov, Vesselin P.
    Li, X. Rong
    PROCEEDINGS OF THE 40TH SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, 2008, : 376 - 380
  • [16] Cramer-Rao Lower Bounds for Hybrid Distance Estimation Schemes
    Sand, S.
    Wang, W.
    Dammann, A.
    2012 IEEE VEHICULAR TECHNOLOGY CONFERENCE (VTC FALL), 2012,
  • [17] Achieving Cramer-Rao Lower Bounds in Sensor Network Estimation
    Djurovic, Igor
    IEEE SENSORS LETTERS, 2018, 2 (01)
  • [18] Cramer-Rao lower bounds for QAM phase and frequency estimation
    Rice, F
    Cowley, B
    Moran, B
    Rice, M
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2001, 49 (09) : 1582 - 1591
  • [19] Cramer-Rao bounds for time of arrival estimation in cellular systems
    Koorapaty, H
    VTC2004-SPRING: 2004 IEEE 59TH VEHICULAR TECHNOLOGY CONFERENCE, VOLS 1-5, PROCEEDINGS, 2004, : 2729 - 2733
  • [20] Posterior Cramer-Rao Lower Bounds for dual Kalman estimation
    Saatci, Esra
    Akan, Aydin
    DIGITAL SIGNAL PROCESSING, 2012, 22 (01) : 47 - 53