Uncertainty principles for the Hankel-Stockwell transform

被引:14
|
作者
Ben Hamadi, Nadia [1 ]
Hafirassou, Zineb [1 ]
Herch, Hajer [2 ]
机构
[1] Fac Sci Tunis, Dept Math, Tunis 1068, Tunisia
[2] Taibah Univ, Fac Sci, Math & Stat Dept, Yanbu, Saudi Arabia
关键词
Hankel transform; Continuous Stockwell transform; Uncertainty principles; LOCALIZATION; INVERSION; FOURIER;
D O I
10.1007/s11868-020-00329-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we define and study the Hankel-Stockwell transform. We prove a version of Heisenberg's uncertainty inequality for the Hankel-Stockwell transform. Then, we extend a quantitative Shapiro's uncertainty principle on the time-frequency concentration of orthonormal sequences mean dispersion theorem with generalized dispersion.
引用
收藏
页码:543 / 564
页数:22
相关论文
共 50 条
  • [41] UNCERTAINTY PRINCIPLES IN TERM OF SUPPORTS IN HANKEL WAVELET SETTING
    Hkimi, S.
    Omri, S.
    OPERATORS AND MATRICES, 2021, 15 (02): : 755 - 776
  • [42] Stockwell transform for Boehmians
    Roopkumar, R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (04) : 251 - 262
  • [43] Convolution based quadratic-phase Stockwell transform: theory and uncertainty relations
    Dar, Aamir H.
    Bhat, M. Younus
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (07) : 20117 - 20147
  • [44] Quaternionic Stockwell transform
    Akila, L.
    Roopkumar, R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2016, 27 (06) : 484 - 504
  • [45] Convolution based quadratic-phase Stockwell transform: theory and uncertainty relations
    Aamir H. Dar
    M. Younus Bhat
    Multimedia Tools and Applications, 2024, 83 : 20117 - 20147
  • [46] Quantitative uncertainty principles for the Weinstein transform
    A. Abouelaz
    A. Achak
    R. Daher
    N. Safouane
    Boletín de la Sociedad Matemática Mexicana, 2019, 25 : 375 - 383
  • [47] Hypergeometric Gabor transform and uncertainty principles
    Mejjaoli, Hatem
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (03):
  • [48] Quantitative uncertainty principles for the Weinstein transform
    Abouelaz, A.
    Achak, A.
    Daher, R.
    Safouane, N.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (02): : 375 - 383
  • [49] UNCERTAINTY PRINCIPLES FOR THE WHITTAKER WIGNER TRANSFORM
    Mejjaoli, Hatem
    OPERATORS AND MATRICES, 2024, 18 (04): : 941 - 966
  • [50] Uncertainty Principles for the Clifford–Fourier Transform
    Jamel El Kamel
    Rim Jday
    Advances in Applied Clifford Algebras, 2017, 27 : 2429 - 2443