Cartesian product stabilization of 3-manifolds

被引:1
作者
Kwasik, Slawomir [2 ]
Rosicki, Witold [1 ]
机构
[1] Univ Gdansk, Inst Math, PL-81952 Gdansk, Poland
[2] Tulane Univ, Dept Math, New Orleans, LA 70118 USA
关键词
Cartesian product; 3-Manifold; CONVERGENCE GROUPS;
D O I
10.1016/j.topol.2010.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Cartesian product of a closed, orientable prime geometric 3-manifold and a closed orientable surface is unique except for the case of the Cartesian product of a special class of Seifert manifolds and a torus The same type of uniqueness holds for stabilization of 3-manifolds by an n-dimensional torus Cartesian squares of Seifert fibered 3-manifolds are completely classified (C) 2010 Elsevier B V All rights reserved
引用
收藏
页码:2342 / 2346
页数:5
相关论文
共 16 条
  • [1] Borsuk Karol., 1945, Fund. Math, V33, P273
  • [2] Brown K.S., 1982, COHOMOLOGY GROUPS GR, V87
  • [3] CONVERGENCE GROUPS AND SEIFERT FIBERED 3-MANIFOLDS
    CASSON, A
    JUNGREIS, D
    [J]. INVENTIONES MATHEMATICAE, 1994, 118 (03) : 441 - 456
  • [4] CONNER P, 1972, LECT NOTES MATH, V299, P237
  • [5] CONVERGENCE GROUPS ARE FUCHSIAN-GROUPS
    GABAI, D
    [J]. ANNALS OF MATHEMATICS, 1992, 136 (03) : 447 - 510
  • [6] Jaco W., 1980, CBMS Reg. Conf. Ser. Math., V43
  • [7] On stability of 3-manifolds
    Kwasik, S
    Rosicki, W
    [J]. FUNDAMENTA MATHEMATICAE, 2004, 182 (02) : 169 - 180
  • [8] VANISHING OF WHITEHEAD TORSION IN DIMENSION-4
    KWASIK, S
    SCHULTZ, R
    [J]. TOPOLOGY, 1992, 31 (04) : 735 - 756
  • [9] All Zq lens spaces have diffeomorphic squares
    Kwasik, S
    Schultz, R
    [J]. TOPOLOGY, 2002, 41 (02) : 321 - 340
  • [10] Orlik Peter, 1972, LNM, V291