This research article demonstrates biodiesel synthesis through the methanolysis of the oily contents (4.02 +/- 0.27% w/w on dried basis) of Dictyota dichotoma collected from the coast of Hawksbay, Pakistan. The metal oxides (CaO, MgO, ZnO, and TiO2) used as nanocatalysts were refluxed (5% K2SO4), calcinated (850 degrees C) and characterized by Atomic Force Microscopy (AFM) which produced 93.2% w/w FAME (biodiesel) at relatively mild condition (5% catalyst, 65 degrees C, 3 h, 18:1 molar ratio) using CaO. Whereas, MgO, ZnO, and TiO2 produced 92.4%, 72.5%, and 31.8% w/w FAME, respectively at elevated condition (225 degrees C). Thus, CaO was considered to be the best catalyst among the others. This tri-phase reaction require continuous fast mixing and the yield depends on the reaction parameters like catalyst amount, temperature, reaction time and molar ratio (methanol: oil). The reusability of these heterogeneous catalysts simplified the purification step, reduced the waste generation and make the final product technically and economically viable.