Enhanced heat transfer in a PCM shell-and-tube thermal energy storage system

被引:68
作者
Woloszyn, Jerzy [1 ]
Szopa, Krystian [1 ]
Czerwinski, Grzegorz [1 ]
机构
[1] AGH Univ Sci & Technol, 30 Mickiewicza Av, PL-30059 Krakow, Poland
关键词
Thermal energy storage; Phase change material; Heat transfer enhancement; CFD; Combined technique; Helical-conical-spiral fins; PHASE-CHANGE MATERIAL; PERFORMANCE EVALUATION; DESIGN PARAMETERS; INCLINATION ANGLE; CONVECTION; FINS; CONFIGURATION; EXCHANGER; MODULE;
D O I
10.1016/j.applthermaleng.2021.117332
中图分类号
O414.1 [热力学];
学科分类号
摘要
The dominant technology among latent heat thermal energy storage methods relies on solid-liquid phase change. Since the primary disadvantage of phase change materials is low thermal conductivity, heat transfer enhancement techniques are required for these types of systems. In this paper, we propose a new double tube latent heat thermal energy storage units. The melting time and exergy efficiency are compared for eight different design solutions. 3D simulations of the phase change material melting process were performed using the enthalpy-porosity model, Boussinesq approximation, and select temperature-dependent phase change material properties. This study shows that the proposed latent heat thermal energy storage unit (M06) significantly reduces PCM melting time compared with vertical (76%), horizontal (66%), and helical-coiled (53%) systems. The helical-coiled unit with spiral fins (M05) has the highest exergy efficiency (0.77) at the end of melting time. The M05, M06 and M08 units have the highest exergy efficiency at times t = 1200 s and t = 3307 s, which is essential for climates with time constraints on latent heat thermal energy storage.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Shell-and-tube type latent heat thermal energy storage: numerical analysis and comparison with experiments
    Fabian Rösler
    Dieter Brüggemann
    Heat and Mass Transfer, 2011, 47 : 1027 - 1033
  • [42] On the application of novel arc-shaped fins in a shell-and-tube type of latent heat storage for energy charge enhancement
    Ben Khedher, Nidhal
    Mahdi, Jasim M.
    Dulaimi, Anmar
    Chatroudi, Ilia Shojaeinasab
    Tiji, Mohammadreza Ebrahimnataj
    Ibrahem, Raed Khalid
    Yvaz, A.
    Talebizadehsardari, Pouyan
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [43] Heat transfer enhancement and performance study on latent heat thermal energy storage system using different configurations of spherical PCM balls
    Surya, A.
    Prakash, R.
    Nallusamy, N.
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [44] A review on heat transfer enhancement techniques for PCM based thermal energy storage system
    Choure, Bhim Kumar
    Alam, Tanweer
    Kumar, Rakesh
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [45] Melting performance enhancement of PCM based thermal energy storage system using multiple tubes and modified shell designs
    Qaiser, Rehan
    Khan, Muhammad Mahabat
    Khan, Lehar Asip
    Irfan, Muhammad
    JOURNAL OF ENERGY STORAGE, 2021, 33
  • [46] Numerical and Experimental Investigation of Shell-and-Tube Phase-Change Material Thermal Energy Storage Unit
    Sherer, Thomas H., II
    Joshi, Yogendra
    JOURNAL OF ELECTRONIC PACKAGING, 2016, 138 (03)
  • [47] Synergistic improvement of melting rate and heat storage capacity by a rotation-based method for shell-and-tube latent thermal energy storage
    Yu, Xiaoli
    Jiang, Ruicheng
    Li, Zhi
    Qian, Gao
    Wang, Bingzheng
    Wang, Lei
    Huang, Rui
    APPLIED THERMAL ENGINEERING, 2023, 219
  • [48] Experimental Evaluation of a Paraffin as Phase Change Material for Thermal Energy Storage in Laboratory Equipment and in a Shell-and-Tube Heat Exchanger
    Gasia, Jaume
    Miro, Laia
    de Gracia, Alvaro
    Barreneche, Camila
    Cabeza, Luisa F.
    APPLIED SCIENCES-BASEL, 2016, 6 (04):
  • [49] Numerical investigation on the heat transfer enhancement of a latent heat thermal energy storage system with bundled tube structures
    Liu, Jiajia
    Xu, Chao
    Ju, Xing
    Yang, Bingbin
    Ren, Yunxiu
    Du, Xiaoze
    APPLIED THERMAL ENGINEERING, 2017, 112 : 820 - 831
  • [50] Study of the effect of tilting lateral surface angle and operating parameters on the performance of a vertical shell-and-tube latent heat energy storage system
    Shen, Gang
    Wang, Xiaolin
    Chan, Andrew
    Cao, Feng
    Yin, Xiang
    SOLAR ENERGY, 2019, 194 : 103 - 113