Enhanced heat transfer in a PCM shell-and-tube thermal energy storage system

被引:72
作者
Woloszyn, Jerzy [1 ]
Szopa, Krystian [1 ]
Czerwinski, Grzegorz [1 ]
机构
[1] AGH Univ Sci & Technol, 30 Mickiewicza Av, PL-30059 Krakow, Poland
关键词
Thermal energy storage; Phase change material; Heat transfer enhancement; CFD; Combined technique; Helical-conical-spiral fins; PHASE-CHANGE MATERIAL; PERFORMANCE EVALUATION; DESIGN PARAMETERS; INCLINATION ANGLE; CONVECTION; FINS; CONFIGURATION; EXCHANGER; MODULE;
D O I
10.1016/j.applthermaleng.2021.117332
中图分类号
O414.1 [热力学];
学科分类号
摘要
The dominant technology among latent heat thermal energy storage methods relies on solid-liquid phase change. Since the primary disadvantage of phase change materials is low thermal conductivity, heat transfer enhancement techniques are required for these types of systems. In this paper, we propose a new double tube latent heat thermal energy storage units. The melting time and exergy efficiency are compared for eight different design solutions. 3D simulations of the phase change material melting process were performed using the enthalpy-porosity model, Boussinesq approximation, and select temperature-dependent phase change material properties. This study shows that the proposed latent heat thermal energy storage unit (M06) significantly reduces PCM melting time compared with vertical (76%), horizontal (66%), and helical-coiled (53%) systems. The helical-coiled unit with spiral fins (M05) has the highest exergy efficiency (0.77) at the end of melting time. The M05, M06 and M08 units have the highest exergy efficiency at times t = 1200 s and t = 3307 s, which is essential for climates with time constraints on latent heat thermal energy storage.
引用
收藏
页数:13
相关论文
共 63 条
[1]   Geometric and design parameters of fins employed for enhancing thermal energy storage systems: a review [J].
Abdulateef, Ammar M. ;
Mat, Sohif ;
Abdulateef, Jasim ;
Sopian, Kamaruzzaman ;
Al-Abidi, Abduljalil A. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 :1620-1635
[2]   Thermal performance evaluation of multi-tube cylindrical LHS system [J].
Abreha, Berihu Gebreyohannes ;
Mahanta, Pinakeswar ;
Trivedi, Gaurav .
APPLIED THERMAL ENGINEERING, 2020, 179 (179)
[3]   Phase change in spiral coil heat storage systems [J].
Ahmadi, R. ;
Hosseini, M. J. ;
Ranjbar, A. A. ;
Bahrampoury, R. .
SUSTAINABLE CITIES AND SOCIETY, 2018, 38 :145-157
[4]   Thermal performance analysis of thermocline combined sensible-latent heat storage system using cascaded-layered PCM designs for medium temperature applications [J].
Ahmed, N. ;
Elfeky, K. E. ;
Lu, Lin ;
Wang, Q. W. .
RENEWABLE ENERGY, 2020, 152 :684-697
[5]   Thermal energy storage performance of paraffin in a novel tube-in-shell system [J].
Akgun, Mithat ;
Aydm, Orhan ;
Kaygusuz, Kamil .
APPLIED THERMAL ENGINEERING, 2008, 28 (5-6) :405-413
[6]  
Anderson D., 2016, Computational Fluid Mechanics and Heat Transfer, V3rd ed., P1
[7]  
ANSYS, 2020, ANSYS FLUENT THEOR G
[8]   Energy storage in latent heat storage of a solar thermal system using a novel flat spiral tube heat exchanger [J].
Ardahaie, S. Saedi ;
Hosseini, M. J. ;
Ranjbar, A. A. ;
Rahimi, M. .
APPLIED THERMAL ENGINEERING, 2019, 159
[9]   Exploratory investigation of a new thermal energy storage system with different phase change materials having distinct melting temperatures [J].
Bains, Pardeep Singh ;
Singh, Harmeet .
JOURNAL OF ENERGY STORAGE, 2018, 19 :1-9
[10]   Investigation of phase change in a spiral-fin heat exchanger [J].
Borhani, S. M. ;
Hosseini, M. J. ;
Ranjbar, A. A. ;
Bahrampoury, R. .
APPLIED MATHEMATICAL MODELLING, 2019, 67 :297-314