On A Subclass of Harmonic Multivalent Functions Defined by a Certain Linear Operator

被引:0
作者
Darwish, Hanan Elsayed [1 ]
Lashin, Abdel Moneim Yousof [1 ]
Sowileh, Suliman Mohammed [1 ]
机构
[1] Mansoura Univ, Dept Math, Fac Sci, Mansoura 35516, Egypt
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2019年 / 59卷 / 04期
关键词
harmonic; multivalent functions; distortion bounds; extreme points; CONVEX;
D O I
10.5666/KMJ.2019.59.4.651
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce and study a new subclass of p-valent harmonic functions defined by modified operator and obtain the basic properties such as coefficient characterization, distortion properties, extreme points, convolution properties, convex combination and also we apply integral operator for this class.
引用
收藏
页码:651 / 663
页数:13
相关论文
共 16 条
[1]  
Ahuja O. P., 2001, ANN U M CURIE SKLO A, V55, P1
[2]  
Al-Oboudi FM., 2004, Int. J. Math. Sci, V27, P1429, DOI [DOI 10.1155/S0161171204108090, 10.1155/S0161171204108090]
[3]   CONVEX AND STARLIKE UNIVALENT FUNCTIONS [J].
BERNARDI, SD .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 135 (JAN) :429-&
[4]   Argument estimates of certain analytic functions defined by a class of multiplier transformations [J].
Cho, NE ;
Srivastava, HM .
MATHEMATICAL AND COMPUTER MODELLING, 2003, 37 (1-2) :39-49
[5]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[6]   SUBCLASS OF HARMONIC STARLIKE FUNCTIONS ASSOCIATED WITH SALAGEAN DERIVATIVE [J].
Darwish, H. E. ;
Lashin, A. Y. ;
Soileh, S. M. .
MATEMATICHE, 2014, 69 (02) :147-158
[7]   A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS WITH POSITIVE COEFFICIENTS [J].
Dixit, K. K. ;
Porwal, Saurabh .
TAMKANG JOURNAL OF MATHEMATICS, 2010, 41 (03) :261-269
[8]   Differential subordination and superordination for certain subclasses of p-valent functions [J].
El-Ashwah, R. M. ;
Aouf, M. K. .
MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (5-6) :349-360
[9]  
Jahangiri Jay M, 2002, Southwest Journal of Pure and Applied Mathematics electronic only, V2002, P77
[10]   Construction of a certain class of harmonic close-to-convex functions associated with the Alexander integral transform [J].
Jahangiri, JM ;
Kim, YC ;
Srivastava, HM .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2003, 14 (03) :237-242