There are infinitely many elliptic Carmichael numbers

被引:2
作者
Wright, Thomas [1 ]
机构
[1] Wofford Coll, Dept Math, 429 N Church St, Spartanburg, SC 29302 USA
关键词
ARITHMETIC PROGRESSIONS;
D O I
10.1112/blms.12185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1987, Dan Gordon defined an elliptic curve analogue to Carmichael numbers known as elliptic Carmichael numbers. In this paper, we prove that there are infinitely many elliptic Carmichael numbers. In doing so, we resolve in the affirmative the question of whether there exist infinitely many Lucas-Carmichael numbers (that is, squarefree, composite integers n such that for every prime p that divides n, p+1|n+1) .
引用
收藏
页码:791 / 800
页数:10
相关论文
共 15 条
[1]   THERE ARE INFINITELY MANY CARMICHAEL NUMBERS [J].
ALFORD, WR ;
GRANVILLE, A ;
POMERANCE, C .
ANNALS OF MATHEMATICS, 1994, 139 (03) :703-722
[2]  
[Anonymous], 1986, GRADUATE TEXTS MATH
[3]   DIOPHANTINE PROBLEMS IN VARIABLES RESTRICTED TO THE VALUES 0 AND 1 [J].
BAKER, RC ;
SCHMIDT, WM .
JOURNAL OF NUMBER THEORY, 1980, 12 (04) :460-486
[4]  
Baker RC, 1998, ACTA ARITH, V83, P331
[5]   ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS [J].
Banks, William D. ;
Pomerance, Carl .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 88 (03) :313-321
[6]  
Boas P. Van Emde, 1970, COMBINATORIAL PROBLE
[7]   INFINITUDE OF ELLIPTIC CARMICHAEL NUMBERS [J].
Ekstrom, Aaron ;
Pomerance, Carl ;
Thakur, Dinesh S. .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2012, 92 (01) :45-60
[8]  
Erdos P, 1956, Publ. Math. (Debr.), V4, P201
[9]  
Gordon D. M., 1989, NUMB THEOR P INT NUM, P291
[10]  
Korselt A., 1899, INTERMEDIAIRE MATH, V3, P142