TEXTURE AND SHAPE FEATURES FOR GRASS WEED CLASSIFICATION USING HYPERSPECTRAL REMOTE SENSING IMAGES

被引:0
作者
Farooq, Adnan [1 ]
Jia, Xiuping [1 ]
Zhou, Jun [2 ]
机构
[1] Univ New South Wales, Sch Engn & Informat Technol, Canberra, ACT 2600, Australia
[2] Griffith Univ, Sch Informat & Commun Technol, Nathan, Qld 4111, Australia
来源
2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019) | 2019年
关键词
Hyperspectral images; weed mapping; Histogram of Oriented Gradients (HoG); Local Binary Pattern (LBP); Gabor features; VISION;
D O I
10.1109/igarss.2019.8900132
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Automatic grass weed detection and classification deals with large intraclass challenges since they are similar to grass in shape, sizes and colors. Grass weed detection and mapping is critical for site-specific weed control to reduce the cost of labor and impact of herbicides. In this paper, we investigate different shape and texture based feature extraction methods to discriminate three different grass weed categories using hyperspectral images. Feature extraction methods including Gabor features, Histogram of Oriented Gradients (HoG), and Local Binary Pattern (LBP) are evaluated in this paper. The experimental results indicate that the overall accuracy of the grass weed classification using the propose combination of texture and shape features generated from LBP and HoG is higher as compared to using shape and texture features separately.
引用
收藏
页码:7208 / 7211
页数:4
相关论文
共 50 条
[11]   BAND SELECTION BASED GAUSSIAN PROCESSES FOR HYPERSPECTRAL REMOTE SENSING IMAGES CLASSIFICATION [J].
Yao, Futian ;
Qian, Yuntao .
2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, :2845-2848
[12]   Automated Deep Learning Driven Crop Classification on Hyperspectral Remote Sensing Images [J].
Duhayyim, Mesfer Al ;
Alsolai, Hadeel ;
Hassine, Siwar Ben Haj ;
Alzahrani, Jaber S. ;
Salama, Ahmed S. ;
Motwakel, Abdelwahed ;
Yaseen, Ishfaq ;
Zamani, Abu Sarwar .
CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02) :3167-3181
[13]   Remote Sensing Performance Enhancement in Hyperspectral Images [J].
Kwan, Chiman .
SENSORS, 2018, 18 (11)
[14]   Identification of Wheat Yellow Rust Using Spectral and Texture Features of Hyperspectral Images [J].
Guo, Anting ;
Huang, Wenjiang ;
Ye, Huichun ;
Dong, Yingying ;
Ma, Huiqin ;
Ren, Yu ;
Ruan, Chao .
REMOTE SENSING, 2020, 12 (09)
[15]   Characterization and classification of urban weed species in northeast China using terrestrial hyperspectral images [J].
Wang, Jinfeng ;
Chen, Guoqing ;
Ju, Jinyan ;
Lin, Tenghui ;
Wang, Ruidong ;
Wang, Zhentao .
WEED SCIENCE, 2023, 71 (04) :353-368
[16]   Weed segmentation using texture features extracted from wavelet sub-images [J].
Bakhshipour, Adel ;
Jafari, Abdolabbas ;
Nassiri, Seyed Mehdi ;
Zare, Dariush .
BIOSYSTEMS ENGINEERING, 2017, 157 :1-12
[17]   Unsupervised segmentation of hyperspectral remote sensing images with superpixels [J].
Barbato, Mirko Paolo ;
Napoletano, Paolo ;
Piccoli, Flavio ;
Schettini, Raimondo .
REMOTE SENSING APPLICATIONS-SOCIETY AND ENVIRONMENT, 2022, 28
[18]   Efficient ELM-Based Techniques for the Classification of Hyperspectral Remote Sensing Images on Commodity GPUs [J].
Lopez-Fandino, Javier ;
Quesada-Barriuso, Pablo ;
Heras, Dora B. ;
Argueello, Francisco .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (06) :2884-2893
[19]   Spectral perturbation method for deep learning-based classification of remote sensing hyperspectral images [J].
Madani, Hadis ;
McIsaac, Kenneth .
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXV, 2019, 11155
[20]   COMBINER OF CLASSIFIERS USING GENETIC ALGORITHM FOR CLASSIFICATION OF REMOTE SENSED HYPERSPECTRAL IMAGES [J].
Santos, A. B. ;
Araujo, A. de A. ;
Menotti, D. .
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, :4146-4149