Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field

被引:150
|
作者
Korniss, G [1 ]
White, CJ
Rikvold, PA
Novotny, MA
机构
[1] Florida State Univ, Sch Computat Sci & Informat Technol, Tallahassee, FL 32306 USA
[2] Florida State Univ, Ctr Mat Res & Technol, Tallahassee, FL 32306 USA
[3] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[4] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.63.016120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the two-dimensional kinetic Ising model below its equilibrium critical temperature, subject to a square-wave oscillating external field. We focus on the multidroplet regime, where the metastable phase decays through nucleation and growth of many droplets of the stable phase. At a critical frequency, the system undergoes a genuine nonequilibrium phase transition, in which the symmetry-broken phase corresponds to an asymmetric stationary limit cycle for the time-dependent magnetization. We investigate the universal aspects of this dynamic phase transition at various temperatures and field amplitudes via large-scale Monte Carlo simulations, employing finite-size scaling techniques adopted from equilibrium critical phenomena. The critical exponents. the fixed-point value of the fourth-order cumulant, and the critical order-parameter distribution all are consistent with the universality class of the two-dimensional equilibrium Ising model. We also study the cross-over from the multidroplet regime to the strong-field regime, where the transition disappears.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] FINITE-SIZE SCALING STUDY OF THE TWO-DIMENSIONAL BLUME-CAPEL MODEL
    BEALE, PD
    PHYSICAL REVIEW B, 1986, 33 (03): : 1717 - 1720
  • [42] Dynamic finite-size effect in the two-dimensional classical XY model
    Oh, SK
    Yoon, CN
    Chung, JS
    Yu, SC
    JOURNAL OF APPLIED PHYSICS, 1997, 81 (08) : 3986 - 3988
  • [43] Finite-size scaling in two-dimensional continuum percolation models
    Nguyen, VL
    Canessa, E
    MODERN PHYSICS LETTERS B, 1999, 13 (17): : 577 - 583
  • [44] FINITE-SIZE EFFECTS ON THE CRITICAL STRUCTURE FACTOR OF THE TWO-DIMENSIONAL ISING-MODEL
    BARTELT, NC
    EINSTEIN, TL
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (08): : 1429 - 1438
  • [45] Finite-size scaling in the diluted two-dimensional Heisenberg antiferromagnet
    Sandvik, AW
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2002, (145): : 332 - 338
  • [46] Influence of the aspect ratio and boundary conditions on universal finite-size scaling functions in the athermal metastable two-dimensional random field Ising model
    Navas-Portella, Victor
    Vives, Eduard
    PHYSICAL REVIEW E, 2016, 93 (02)
  • [47] FINITE-SIZE SCALING OF TWO-DIMENSIONAL AXIAL NEXT-NEAREST-NEIGHBOR ISING-MODELS
    BEALE, PD
    DUXBURY, PM
    YEOMANS, J
    PHYSICAL REVIEW B, 1985, 31 (11): : 7166 - 7170
  • [48] The Finite-Size Scaling Study of the Ising Model for the Fractals
    Z. Merdan
    M. Bayirli
    A. Günen
    M. Bülbül
    International Journal of Theoretical Physics, 2016, 55 : 2031 - 2039
  • [49] Boundary effects on finite-size scaling for the 5-dimensional Ising model
    Lundow, P. H.
    NUCLEAR PHYSICS B, 2021, 967
  • [50] Finite-size scaling of the high-dimensional Ising model in the loop representation
    Xiao, Tianning
    Li, Zhiyi
    Zhou, Zongzheng
    Fang, Sheng
    Deng, Youjin
    PHYSICAL REVIEW E, 2024, 109 (03)