Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field

被引:150
|
作者
Korniss, G [1 ]
White, CJ
Rikvold, PA
Novotny, MA
机构
[1] Florida State Univ, Sch Computat Sci & Informat Technol, Tallahassee, FL 32306 USA
[2] Florida State Univ, Ctr Mat Res & Technol, Tallahassee, FL 32306 USA
[3] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[4] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.63.016120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the two-dimensional kinetic Ising model below its equilibrium critical temperature, subject to a square-wave oscillating external field. We focus on the multidroplet regime, where the metastable phase decays through nucleation and growth of many droplets of the stable phase. At a critical frequency, the system undergoes a genuine nonequilibrium phase transition, in which the symmetry-broken phase corresponds to an asymmetric stationary limit cycle for the time-dependent magnetization. We investigate the universal aspects of this dynamic phase transition at various temperatures and field amplitudes via large-scale Monte Carlo simulations, employing finite-size scaling techniques adopted from equilibrium critical phenomena. The critical exponents. the fixed-point value of the fourth-order cumulant, and the critical order-parameter distribution all are consistent with the universality class of the two-dimensional equilibrium Ising model. We also study the cross-over from the multidroplet regime to the strong-field regime, where the transition disappears.
引用
收藏
页数:15
相关论文
共 50 条