Dynamic phase transition, universality, and finite-size scaling in the two-dimensional kinetic Ising model in an oscillating field

被引:153
作者
Korniss, G [1 ]
White, CJ
Rikvold, PA
Novotny, MA
机构
[1] Florida State Univ, Sch Computat Sci & Informat Technol, Tallahassee, FL 32306 USA
[2] Florida State Univ, Ctr Mat Res & Technol, Tallahassee, FL 32306 USA
[3] Florida State Univ, Dept Phys, Tallahassee, FL 32306 USA
[4] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
来源
PHYSICAL REVIEW E | 2001年 / 63卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevE.63.016120
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the two-dimensional kinetic Ising model below its equilibrium critical temperature, subject to a square-wave oscillating external field. We focus on the multidroplet regime, where the metastable phase decays through nucleation and growth of many droplets of the stable phase. At a critical frequency, the system undergoes a genuine nonequilibrium phase transition, in which the symmetry-broken phase corresponds to an asymmetric stationary limit cycle for the time-dependent magnetization. We investigate the universal aspects of this dynamic phase transition at various temperatures and field amplitudes via large-scale Monte Carlo simulations, employing finite-size scaling techniques adopted from equilibrium critical phenomena. The critical exponents. the fixed-point value of the fourth-order cumulant, and the critical order-parameter distribution all are consistent with the universality class of the two-dimensional equilibrium Ising model. We also study the cross-over from the multidroplet regime to the strong-field regime, where the transition disappears.
引用
收藏
页数:15
相关论文
共 69 条
[1]   Nonequilibrium phase transition in the kinetic Ising model: Critical slowing down and the specific-heat singularity [J].
Acharyya, M .
PHYSICAL REVIEW E, 1997, 56 (03) :2407-2411
[2]   RESPONSE OF ISING SYSTEMS TO OSCILLATING AND PULSED FIELDS - HYSTERESIS, AC, AND PULSE SUSCEPTIBILITY [J].
ACHARYYA, M ;
CHAKRABARTI, BK .
PHYSICAL REVIEW B, 1995, 52 (09) :6550-6568
[3]   Nonequilibrium phase transition in the kinetic Ising model: Is the transition point the maximum lossy point? [J].
Acharyya, M .
PHYSICAL REVIEW E, 1998, 58 (01) :179-186
[4]   Nonequilibrium phase transition in the kinetic Ising model: Divergences of fluctuations and responses near the transition point [J].
Acharyya, M .
PHYSICAL REVIEW E, 1997, 56 (01) :1234-1237
[5]  
ACHARYYA M, 1994, ANN REV COMPUTATIONA, V1, P107
[6]  
Aharoni A., 1996, INTRO THEORY FERROMA
[7]   Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (02) :177-184
[8]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[9]  
Avrami M., 1940, J CHEM PHYS, V8, P212, DOI [10.1063/1.1750631, DOI 10.1063/1.1750631]
[10]  
Beale P. D., 1994, Integrated Ferroelectrics, V4, P107, DOI 10.1080/10584589408018665