Characterizing Single-Molecule FRET Dynamics with Probability Distribution Analysis

被引:68
|
作者
Santoso, Yusdi [1 ,2 ]
Torella, Joseph P. [1 ,2 ,3 ]
Kapanidis, Achillefs N. [1 ,2 ]
机构
[1] Univ Oxford, Dept Phys, Oxford OX1 3PU, England
[2] Univ Oxford, Biol Phys Res Grp, Oxford OX1 3PU, England
[3] Harvard Univ, Sch Med, Dept Syst Biol, Boston, MA 02115 USA
基金
英国工程与自然科学研究理事会;
关键词
conformational analysis; DNA polymerase; DNA structures; probability distribution analysis; single-molecule studies; RESONANCE ENERGY-TRANSFER; DNA-POLYMERASE-I; FLUORESCENCE CORRELATION SPECTROSCOPY; ALTERNATING-LASER EXCITATION; CONFORMATIONAL DYNAMICS; CRYSTAL-STRUCTURE; FLUCTUATION SPECTROSCOPY; DIFFUSING MOLECULES; LARGE FRAGMENT; MECHANISM;
D O I
10.1002/cphc.201000129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Probability distribution analysis (PDA) is a recently developed statistical tool for predicting the shapes of single-molecule fluorescence resonance energy transfer (smFRET) histograms, which allows the identification of single or multiple static molecular species within a single histogram. We used a generalized PDA method to predict the shapes of FRET histograms for molecules interconverting dynamically between multiple states. This method is tested on a series of model systems, including both static DNA fragments and dynamic DNA hairpins. By fitting the shape of this expected distribution to experimental data, the timescale of hairpin conformational fluctuations can be recovered, in good agreement with earlier published results obtained using different techniques. This method is also applied to studying the conformational fluctuations in the unliganded Klenow fragment (KF) of Escherichia coli DNA polymerase I, which allows both confirmation of the consistency of a simple, two-state kinetic model with the observed smFRET distribution of unliganded KF and extraction of a millisecond fluctuation timescale, in good agreement with rates reported elsewhere. We expect this method to be useful in extracting rates from processes exhibiting dynamic FRET, and in hypothesis-testing models of conformational dynamics against experimental data.
引用
收藏
页码:2209 / 2219
页数:11
相关论文
共 50 条
  • [1] Single-molecule FRET analysis of the dynamics of AMPA receptor
    Salatan, Ferandre
    Rambhadran, Anu
    Jayaraman, Vasanthi
    Landes, Christy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 239
  • [2] Single-molecule FRET with diffusion and conformational dynamics
    Gopich, Irina V.
    Szabo, Attila
    JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (44): : 12925 - 12932
  • [3] Characterizing multiple molecular states in single-molecule multiparameter fluorescence detection by probability distribution analysis
    Kalinin, Stanislav
    Felekyan, Suren
    Valeri, Alessandro
    Seidel, Claus A. M.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (28): : 8361 - 8374
  • [4] Single-molecule FRET of protein structure and dynamics - a primer
    Schuler, Benjamin
    JOURNAL OF NANOBIOTECHNOLOGY, 2013, 11
  • [5] Single-molecule FRET studies of protein conformational dynamics
    Yang, Haw
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [6] Single-molecule FRET of protein structure and dynamics - a primer
    Benjamin Schuler
    Journal of Nanobiotechnology, 11
  • [7] Structural Dynamics of Nucleic Acids by Single-Molecule FRET
    Kruger, Asger Christian
    Hildebrandt, Lasse Lava
    Kragh, Sofie Louise
    Birkedal, Victoria
    LABORATORY METHODS IN CELL BIOLOGY: IMAGING, 2012, 113 : 1 - 37
  • [8] Single-Molecule FRET for Protein Conformation Distributions and Dynamics
    Yang, Haw
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 42A - 42A
  • [9] SINGLE-MOLECULE FRET OF PROTEIN-FOLDING DYNAMICS
    Nettels, Daniel
    Schuler, Benjamin
    SINGLE-MOLECULE BIOPHYSICS: EXPERIMENT AND THEORY, VOL 146, 2012, 146 : 23 - 48
  • [10] Single-molecule FRET for probing nanoscale biomolecular dynamics
    Nettels, Daniel
    Galvanetto, Nicola
    Ivanovic, Milos T.
    Nuesch, Mark
    Yang, Tianjin
    Schuler, Benjamin
    NATURE REVIEWS PHYSICS, 2024, 6 (10) : 587 - 605