Inequalities for generalized Riemann-Liouville fractional integrals of generalized strongly convex functions

被引:0
|
作者
Farid, Ghulam [1 ]
Kwun, Young Chel [2 ]
Yasmeen, Hafsa [1 ]
Akkurt, Abdullah [3 ]
Kang, Shin Min [4 ,5 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Attock Campus, Attock, Punjab, Pakistan
[2] Dong A Univ, Dept Math, Busan 49315, South Korea
[3] Kahramanmaras Sutcu Imam Univ, Fac Sci & Arts, Dept Math, TR-46100 Kahramanmaras, Turkey
[4] Gyeongsang Natl Univ, Dept Math, Jinju 52828, South Korea
[5] China Med Univ, Ctr Gen Educ, Taichung 40402, Taiwan
关键词
(h - m)-convex function; Strongly (h - m)- convex function; (alpha; h-m)-convex function; Strongly; Hadamard inequality; Riemann-Liouville fractional integrals; HERMITE-HADAMARD INEQUALITY; DIFFERENTIABLE MAPPINGS; REAL NUMBERS;
D O I
10.1186/s13662-021-03548-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some new integral inequalities for strongly (alpha, h - m)- cony ex functions via generalized Riemann-Liouville fractional integrals are established. The outcomes of this paper provide refinements of some fractional integral inequalities for strongly convex, strongly m-convex, strongly (alpha, m)-convex, and strongly (h - m)-convex functions. Also, the refinements of error estimations of these inequalities are obtained by using two fractional integral identities. Moreover, using a parameter substitution and a constant multiplier, k-fractional versions of established inequalities are also given.
引用
收藏
页数:25
相关论文
共 50 条
  • [21] Trapezium-Type Inequalities for an Extension of Riemann-Liouville Fractional Integrals Using Raina's Special Function and Generalized Coordinate Convex Functions
    Vivas-Cortez, Miguel
    Kashuri, Artion
    Liko, Rozana
    Hernandez, Jorge Eliecer Hernandez
    AXIOMS, 2020, 9 (04) : 1 - 17
  • [22] Grüss type integral inequalities for generalized Riemann-Liouville k-fractional integrals
    Shahid Mubeen
    Sana Iqbal
    Journal of Inequalities and Applications, 2016
  • [23] Certain generalized Riemann-Liouville fractional integrals inequalities based on exponentially (h, m)-preinvexity
    Chen, Junxi
    Luo, Chunyan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (02)
  • [24] On Riemann-Liouville integrals and Caputo Fractional derivatives via strongly modified (p, h)-convex functions
    Nosheen, Ammara
    Khan, Khuram Ali
    Bukhari, Mudassir Hussain
    Kahungu, Michael Kikomba
    Aljohani, A. F.
    PLOS ONE, 2024, 19 (10):
  • [25] SOME OSTROWSKI TYPE INEQUALITIES VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS FOR h-CONVEX FUNCTIONS
    Liu, Wenjun
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2014, 16 (05) : 998 - 1004
  • [26] On some Newton's type inequalities for differentiable convex functions via Riemann-Liouville fractional integrals
    Ali, Muhammad Aamir
    Budak, Huseyin
    Feckan, Michal
    Patanarapeelert, Nichaphat
    Sitthiwirattham, Thanin
    FILOMAT, 2023, 37 (11) : 3427 - 3441
  • [27] Inequalities for fractional Riemann–Liouville integrals of certain class of convex functions
    Ghulam Farid
    Josip Pec̆arić
    Kamsing Nonlaopon
    Advances in Continuous and Discrete Models, 2022
  • [28] INEQUALITIES FOR CO-ORDINATED M-CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Yildiz, Cetin
    Tunc, Mevlut
    Kavurmaci, Havva
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2014, 5 (01): : 45 - 55
  • [29] A NOTE ON HERMITE-HADAMARD INEQUALITIES FOR PRODUCTS OF CONVEX FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS
    Chen, Feixiang
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (33): : 299 - 306
  • [30] Simpson Type Integral Inequalities for Convex Functions via Riemann-Liouville Integrals
    Set, Erhan
    Akdemir, Ahmet Ocak
    Ozdemir, M. Emin
    FILOMAT, 2017, 31 (14) : 4415 - 4420