Tunnel barrier photoelectrodes for solar water splitting

被引:10
作者
Guo, Lian [1 ]
Hung, David [1 ]
Wang, Weigang [2 ]
Shen, Weifeng [3 ]
Zhu, Leyi [2 ]
Chien, Chia-Ling [1 ,2 ]
Searson, Peter C. [1 ,2 ]
机构
[1] Johns Hopkins Univ, Dept Mat Sci & Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Dept Phys & Astron, Baltimore, MD 21218 USA
[3] Brown Univ, Dept Phys, Providence, RI 02912 USA
关键词
corrosion; electrochemical electrodes; electrolytes; magnesium compounds; photochemistry; solar energy conversion; titanium compounds; CELLS; XPS;
D O I
10.1063/1.3479055
中图分类号
O59 [应用物理学];
学科分类号
摘要
Tunnel barrier photoelectrodes, with a thin inorganic tunnel barrier layer that isolates the semiconductor electrode from the electrolyte while allowing current flow across the interface, are a possible solution to the problem of photocorrosion in solar water splitting. In this approach, selection of the semiconductor for the light absorber is decoupled from selection of the tunnel barrier material that provides chemical stability. Here we demonstrate a proof-of-principle of this approach with TiO2/MgO tunnel barrier photoelectrodes. (C) 2010 American Institute of Physics. [doi:10.1063/1.3479055]
引用
收藏
页数:3
相关论文
共 16 条
[1]  
[Anonymous], 1995, Handbook of X-ray Photoelectron Spectroscopy. A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data
[2]   III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN [J].
Deutsch, Todd G. ;
Koval, Carl A. ;
Turner, John A. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (50) :25297-25307
[3]   Core-shell nanoporous electrode for dye sensitized solar cells: the effect of shell characteristics on the electronic properties of the electrode [J].
Diamant, Y ;
Chappel, S ;
Chen, SG ;
Melamed, O ;
Zaban, A .
COORDINATION CHEMISTRY REVIEWS, 2004, 248 (13-14) :1271-1276
[4]   Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation [J].
Fujii, K ;
Karasawa, TK ;
Ohkawa, K .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 2005, 44 (16-19) :L543-L545
[5]   Development of the magnetic tunnel junction MRAM at IBM: From first junctions to a 16-Mb MRAM demonstrator chip [J].
Gallagher, WJ ;
Parkin, SSP .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2006, 50 (01) :5-23
[6]   DISCOVERY OF TUNNELING SUPERCURRENTS [J].
JOSEPHSON, BD .
SCIENCE, 1974, 184 (4136) :527-530
[7]   A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting [J].
Khaselev, O ;
Turner, JA .
SCIENCE, 1998, 280 (5362) :425-427
[8]   INTERBAND-TRANSITIONS OF SEMICONDUCTING OXIDES DETERMINED FROM PHOTOELECTROLYSIS SPECTRA [J].
KOFFYBERG, FP ;
DWIGHT, K ;
WOLD, A .
SOLID STATE COMMUNICATIONS, 1979, 30 (07) :433-437
[9]   Direct hydrogen gas generation by using InGaN epilayers as working electrodes [J].
Li, J. ;
Lin, J. Y. ;
Jiang, H. X. .
APPLIED PHYSICS LETTERS, 2008, 93 (16)
[10]   PHOTOELECTROCHEMISTRY - APPLICATIONS TO SOLAR-ENERGY CONVERSION [J].
NOZIK, AJ .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1978, 29 :189-222