Laser-induced Forward Transfer of Ag Nanopaste

被引:15
作者
Breckenfeld, Eric [1 ]
Kim, Heungsoo [2 ]
Auyeung, Raymond C. Y. [2 ]
Pique, Alberto [2 ]
机构
[1] Naval Res Lab, Natl Res Council, Res Associates Program, Washington, DC 20375 USA
[2] Naval Res Lab, Mat Sci & Technol Div, Washington, DC 20375 USA
来源
JOVE-JOURNAL OF VISUALIZED EXPERIMENTS | 2016年 / 109期
关键词
Engineering; Issue; 109; Physics; LIFT; direct-write; interconnects; Ag nanopaste; additive manufacturing; printing; DIRECT-WRITE; FABRICATION;
D O I
10.3791/53728
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Over the past decade, there has been much development of non-lithographic methods(1-3) for printing metallic inks or other functional materials. Many of these processes such as inkjet(3) and laser-induced forward transfer (LIFT)(4) have become increasingly popular as interest in printable electronics and maskless patterning has grown. These additive manufacturing processes are inexpensive, environmentally friendly, and well suited for rapid prototyping, when compared to more traditional semiconductor processing techniques. While most direct-write processes are confined to two-dimensional structures and cannot handle materials with high viscosity (particularly inkjet), LIFT can transcend both constraints if performed properly. Congruent transfer of three dimensional pixels (called voxels), also referred to as laser decal transfer (LDT)(5-9), has recently been demonstrated with the LIFT technique using highly viscous Ag nanopastes to fabricate freestanding interconnects, complex voxel shapes, and high-aspect-ratio structures. In this paper, we demonstrate a simple yet versatile process for fabricating a variety of micro-and macroscale Ag structures. Structures include simple shapes for patterning electrical contacts, bridging and cantilever structures, high-aspect-ratio structures, and single-shot, large area transfers using a commercial digital micromirror device (DMD) chip.
引用
收藏
页数:11
相关论文
共 18 条
[1]   Laser direct-write techniques for printing of complex materials [J].
Arnold, Craig B. ;
Serra, Pere ;
Pique, Alberto .
MRS BULLETIN, 2007, 32 (01) :23-31
[2]   Laser forward transfer based on a spatial light modulator [J].
Auyeung, R. C. Y. ;
Kim, H. ;
Charipar, N. A. ;
Birnbaum, A. J. ;
Mathews, S. A. ;
Pique, A. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2011, 102 (01) :21-26
[3]   Laser decal transfer of freestanding microcantilevers and microbridges [J].
Auyeung, R. C. Y. ;
Kim, H. ;
Birnbaum, A. J. ;
Zalalutdinov, M. ;
Mathews, S. A. ;
Pique, A. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2009, 97 (03) :513-519
[4]   Laser-induced forward transfer of silver nanopaste for microwave interconnects [J].
Breckenfeld, E. ;
Kim, H. ;
Auyeung, R. C. Y. ;
Charipar, N. ;
Serra, P. ;
Pique, A. .
APPLIED SURFACE SCIENCE, 2015, 331 :254-261
[5]   Inkjet printing for materials and devices [J].
Calvert, P .
CHEMISTRY OF MATERIALS, 2001, 13 (10) :3299-3305
[6]   Jet formation in the laser forward transfer of liquids [J].
Duocastella, M. ;
Fernandez-Pradas, J. M. ;
Serra, P. ;
Morenza, J. L. .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2008, 93 (02) :453-456
[7]   Time-resolved shadowgraph imaging of femtosecond laser-induced forward transfer of solid materials [J].
Feinaeugle, M. ;
Alloncle, A. P. ;
Delaporte, Ph. ;
Sones, C. L. ;
Eason, R. W. .
APPLIED SURFACE SCIENCE, 2012, 258 (22) :8475-8483
[8]   Direct writing technology-Advances and developments [J].
Hon, K. K. B. ;
Li, L. ;
Hutchings, I. M. .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2008, 57 (02) :601-620
[9]   Hydrostatic Optimization of Inkjet-Printed Films [J].
Kang, Hongki ;
Soltman, Dan ;
Subramanian, Vivek .
LANGMUIR, 2010, 26 (13) :11568-11573
[10]   Fabrication of terahertz metamaterials by laser printing [J].
Kim, Heungsoo ;
Melinger, Joseph S. ;
Khachatrian, Ani ;
Charipar, Nicholas A. ;
Auyeung, Raymond C. Y. ;
Pique, Alberto .
OPTICS LETTERS, 2010, 35 (23) :4039-4041