Effect of glycine on bioleaching of rare earth elements from Western Australian monazite by heterotrophic and autotrophic microorganisms

被引:20
作者
Fathollahzadeh, Homayoun [1 ,2 ,3 ]
Khaleque, Himel N. [2 ]
Eksteen, Jacques [1 ]
Kaksonen, Anna H. [2 ]
Watkin, Elizabeth L. J. [4 ]
机构
[1] Curtin Univ, Western Australian Sch Mines, GPO Box U1987, Perth, WA 6845, Australia
[2] CSIRO Land & Water, Private Bag 5, Wembley, WA 6913, Australia
[3] Univ Toronto, Dept Civil & Mineral Engn, Toronto, ON M5S 1A4, Canada
[4] Curtin Univ, Sch Pharm & Biomed Sci, CHIRI Biosci, GPO Box U1987, Perth, WA 6845, Australia
关键词
Monazite bioleaching; Enterobacter aerogenes; Acidithiobacillus ferrooxidans; Rare earth elements; Sustainable mining; Glycine; PHOSPHATE MINERALS; AMINO-ACIDS; SOLUBILIZATION; IRON;
D O I
10.1016/j.hydromet.2019.105137
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The conventional hydrometallurgical recovery of rare earth elements (REEs) through highly basic and acidic processes is known to lead to many challenges including the production of toxic waste. An alternative process for bioleaching REEs from three different grades of monazite using heterotrophic (Enterobacter (E.) aerogenes) or autotrophic (Acidithiobacillus (A.) ferrooxidans) microorganisms in the presence of a benign biodegradable lixiviant, glycine (1 g L-1) was studied and evaluated. The combination of E. aerogenes and A. ferrooxidans and glycine decreased REEs bioleaching from monazite as compared to abiotic leaching or bioleaching in the absence of glycine.
引用
收藏
页数:8
相关论文
共 42 条
  • [1] Purification of rare earth elements from monazite sulphuric acid leach liquor and the production of high-purity ceric oxide
    Abreu, Renata D.
    Morais, Carlos A.
    [J]. MINERALS ENGINEERING, 2010, 23 (06) : 536 - 540
  • [2] Electrochemistry of copper in aqueous glycine solutions
    Aksu, S
    Doyle, FM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (01) : B51 - B57
  • [3] Behind the Scenes of Clean Energy: The Environmental Footprint of Rare Earth Products
    Arshi, Praneet S.
    Vahidi, Ehsan
    Zhao, Fu
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (03): : 3311 - 3320
  • [4] Life in acid: pH homelostasis in acidophiles
    Baker-Austin, Craig
    Dopson, Mark
    [J]. TRENDS IN MICROBIOLOGY, 2007, 15 (04) : 165 - 171
  • [5] Bosecker K, 1997, FEMS MICROBIOL REV, V20, P591, DOI 10.1016/S0168-6445(97)00036-3
  • [6] Bioleaching of Rare Earth Elements from Monazite Sand
    Brisson, Vanessa L.
    Zhuang, Wei-Qin
    Alvarez-Cohen, Lisa
    [J]. BIOTECHNOLOGY AND BIOENGINEERING, 2016, 113 (02) : 339 - 348
  • [7] Syntrophic effect of indigenous and inoculated microorganisms in the leaching of rare earth elements from Western Australian monazite
    Corbett, Melissa K.
    Eksteen, Jacques J.
    Niu, Xi-Zhi
    Watkin, Elizabeth L. J.
    [J]. RESEARCH IN MICROBIOLOGY, 2018, 169 (10) : 558 - 568
  • [8] Interactions of phosphate solubilising microorganisms with natural rare-earth phosphate minerals: a study utilizing Western Australian monazite
    Corbett, Melissa K.
    Eksteen, Jacques J.
    Niu, Xi-Zhi
    Croue, Jean-Philippe
    Watkin, Elizabeth L. J.
    [J]. BIOPROCESS AND BIOSYSTEMS ENGINEERING, 2017, 40 (06) : 929 - 942
  • [9] Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms
    Dopson, Mark
    Ossandon, Francisco J.
    Lovgren, Lars
    Holmes, David S.
    [J]. FRONTIERS IN MICROBIOLOGY, 2014, 5
  • [10] The leaching and adsorption of gold using low concentration amino acids and hydrogen peroxide: Effect of catalytic ions, sulphide minerals and amino acid type
    Eksteen, J. J.
    Oraby, E. A.
    [J]. MINERALS ENGINEERING, 2015, 70 : 36 - 42