Stability and existence of surfaces in symplectic 4-manifolds with b+=1

被引:5
作者
Dorfmeister, Josef G. [1 ]
Li, Tian-Jun [2 ]
Wu, Weiwei [3 ]
机构
[1] North Dakota State Univ, Dept Math, Fargo, ND 58102 USA
[2] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[3] Michigan State Univ, Dept Math, E Lansing, MI 48910 USA
来源
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK | 2018年 / 742卷
关键词
RATIONAL BLOWDOWNS; TORI; SPHERES; CONE;
D O I
10.1515/crelle-2015-0083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish various stability results for symplectic surfaces in symplectic 4-manifolds with b(+) = 1. These results are then applied to prove the existence of representatives of Lagrangian ADE-configurations as well as to classify negative symplectic spheres in symplectic 4-manifolds with kappa = -infinity. This involves the explicit construction of spheres in rational manifolds via a new construction technique called the tilted transport.
引用
收藏
页码:115 / 155
页数:41
相关论文
共 42 条
[1]  
Akhmedov A., 2012, PREPRINT
[2]  
[Anonymous], 2011, GEOMETRY ANAL
[3]   NEGATIVE CURVES ON ALGEBRAIC SURFACES [J].
Bauer, Thomas ;
Harbourne, Brian ;
Knutsen, Andreas Leopold ;
Kueronya, Alex ;
Mueller-Stach, Stefan ;
Roulleau, Xavier ;
Szemberg, Tomasz .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (10) :1877-1894
[4]  
Bauer T, 2012, EMS SER CONGR REP, P93
[5]   A stability property of symplectic packing [J].
Biran, P .
INVENTIONES MATHEMATICAE, 1999, 136 (01) :123-155
[6]   Lagrangian barriers and symplectic embeddings [J].
Biran, P .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2001, 11 (03) :407-464
[7]  
Borman M. S., 2012, PREPRINT
[8]  
Dorfmeister JG, 2010, J SYMPLECT GEOM, V8, P1
[9]   Symplectic tori in rational elliptic surfaces [J].
Etgü, T ;
Park, BD .
MATHEMATISCHE ANNALEN, 2006, 334 (03) :679-691
[10]   Homologous non-isotopic symplectic tori in a K3 surface [J].
Etgü, T ;
Park, BD .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2005, 7 (03) :325-340