Machine learning classification of multiple sclerosis in children using optical coherence tomography

被引:9
|
作者
Ciftci Kavaklioglu, Beyza [1 ,2 ]
Erdman, Lauren [3 ,4 ]
Goldenberg, Anna [3 ,4 ,5 ]
Kavaklioglu, Can [6 ]
Alexander, Cara [3 ]
Oppermann, Hannah M. [3 ,7 ]
Patel, Amish [3 ]
Hossain, Soaad [3 ,5 ,8 ]
Berenbaum, Tara [9 ]
Yau, Olivia [9 ]
Yea, Carmen [9 ]
Ly, Mina [9 ]
Costello, Fiona [10 ,11 ]
Mah, Jean K. [12 ]
Reginald, Arun [13 ,14 ]
Banwell, Brenda [15 ]
Longoni, Giulia [1 ,16 ,17 ]
Ann Yeh, E. [1 ,16 ,17 ]
机构
[1] Hosp Sick Children, SickKids Res Inst, Neurosci & Mental Hlth Program, 555 Univ Ave, Toronto, ON M5G 1X8, Canada
[2] Univ Manitoba, Rady Fac Hlth Sci, Max Rady Coll Med, Dept Internal Med, Winnipeg, MB, Canada
[3] Univ Toronto, Dept Comp Sci, Toronto, ON, Canada
[4] Vector Inst, Toronto, ON, Canada
[5] Univ Toronto, Temerty Ctr AI Res & Educ Med, Toronto, ON, Canada
[6] Ryerson Univ, Dept Mech & Ind Engn, Toronto, ON, Canada
[7] Univ Utrecht, Dept Informat & Comp Sci, Utrecht, Netherlands
[8] Environ Analyt, Toronto, ON, Canada
[9] Hosp Sick Children, Dept Neurosci & Mental Hlth, Div Neurol, Toronto, ON, Canada
[10] Univ Calgary, Hotchkiss Brain Inst, Dept Clin Neurosci, Calgary, AB, Canada
[11] Univ Calgary, Dept Surg Ophthalmol, Calgary, AB, Canada
[12] Univ Calgary, Cumming Sch Med, Dept Pediat, Calgary, AB, Canada
[13] Univ Toronto, Dept Ophthalmol & Vis Sci, Toronto, ON, Canada
[14] Hosp Sick Children, Dept Ophthalmol & Vis Sci, Toronto, ON, Canada
[15] Univ Penn, Childrens Hosp Philadelphia, Perelman Sch Med, Div Neurol, Philadelphia, PA 19104 USA
[16] Hosp Sick Children, Div Neurol, Toronto, ON, Canada
[17] Univ Toronto, Dept Pediat, Toronto, ON, Canada
关键词
Multiple sclerosis; pediatric; optical coherence tomography; supervised learning; retinal nerve fiber layer thickness; FIBER LAYER THICKNESS; VISUAL-ACUITY; DIAGNOSIS; NEURITIS; REVISIONS; CRITERIA; CNS;
D O I
10.1177/13524585221112605
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: In children, multiple sclerosis (MS) is the ultimate diagnosis in only 1/5 to 1/3 of cases after a first episode of central nervous system (CNS) demyelination. As the visual pathway is frequently affected in MS and other CNS demyelinating disorders (DDs), structural retinal imaging such as optical coherence tomography (OCT) can be used to differentiate MS. Objective: This study aimed to investigate the utility of machine learning (ML) based on OCT features to identify distinct structural retinal features in children with DDs. Methods: This study included 512 eyes from 187 (n(eyes) = 374) children with demyelinating diseases and 69 (n(eyes) = 138) controls. Input features of the analysis comprised of 24 auto-segmented OCT features. Results: Random Forest classifier with recursive feature elimination yielded the highest predictive values and identified DDs with 75% and MS with 80% accuracy, while multiclass distinction between MS and monophasic DD was performed with 64% accuracy. A set of eight retinal features were identified as the most important features in this classification. Conclusion: This study demonstrates that ML based on OCT features can be used to support a diagnosis of MS in children.
引用
收藏
页码:2253 / 2262
页数:10
相关论文
共 50 条
  • [1] Machine learning in diagnosis and disability prediction of multiple sclerosis using optical coherence tomography
    Montolio, Alberto
    Martin-Gallego, Alejandro
    Cegonino, Jose
    Orduna, Elvira
    Vilades, Elisa
    Garcia-Martin, Elena
    Perez del Palomar, Amaya
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133
  • [2] Optical Coherence Tomography and Optical Coherence Tomography with Angiography in Multiple Sclerosis
    Chalkias, Ioannis-Nikolaos
    Bakirtzis, Christos
    Pirounides, Demetrios
    Boziki, Marina Kleopatra
    Grigoriadis, Nikolaos
    HEALTHCARE, 2022, 10 (08)
  • [3] Optical Coherence Tomography in Multiple Sclerosis
    Hanson, James V. M.
    Lukas, Sebastian C.
    Pless, Misha
    Schippling, Sven
    SEMINARS IN NEUROLOGY, 2016, 36 (02) : 177 - 184
  • [4] Optical Coherence Tomography in Multiple Sclerosis
    Graves, Jennifer S.
    SEMINARS IN NEUROLOGY, 2019, 39 (06) : 711 - 717
  • [5] Optical coherence tomography in multiple sclerosis
    Woelbert, M.
    Brandt, A. U.
    Paul, F.
    Schippling, S.
    NERVENHEILKUNDE, 2011, 30 (07) : 493 - 497
  • [6] Optical coherence tomography in multiple sclerosis
    Vidal-Jordana, Angela
    Sastre-Garriga, Jaume
    Montalban, Xavier
    REVISTA DE NEUROLOGIA, 2012, 54 (09) : 556 - 563
  • [7] The Use of Optical Coherence Tomography in Multiple Sclerosis
    Matuskova, V.
    Preiningerova, J. Lizrova
    Vyslouzilova, D.
    Michalec, M.
    Kasl, Z.
    Vlkova, E.
    CESKA A SLOVENSKA NEUROLOGIE A NEUROCHIRURGIE, 2016, 79 (01) : 33 - 40
  • [8] Neural networks to identify multiple sclerosis with optical coherence tomography
    Garcia-Martin, Elena
    Pablo, Luis E.
    Herrero, Raquel
    Ara, Jose R.
    Martin, Jesus
    Larrosa, Jose M.
    Polo, Vicente
    Garcia-Feijoo, Julian
    Fernandez, Javier
    ACTA OPHTHALMOLOGICA, 2013, 91 (08) : E628 - E634
  • [9] Optical coherence tomography in multiple sclerosis
    Siger, Malgorzata
    Dziegielewski, Krzysztof
    Jasek, Lukasz
    Bieniek, Marek
    Nicpan, Agnieszka
    Nawrocki, Jerzy
    Selmaj, Krzysztof
    JOURNAL OF NEUROLOGY, 2008, 255 (10) : 1555 - 1560
  • [10] Computer-Aided Diagnosis of Multiple Sclerosis Using a Support Vector Machine and Optical Coherence Tomography Features
    Cavaliere, Carlo
    Vilades, Elisa
    Alonso-Rodriguez, Ma C.
    Rodrigo, Maria Jesus
    Pablo, Luis Emilio
    Miguel, Juan Manuel
    Lopez-Guillen, Elena
    Morla, Eva Ma Sanchez
    Boquete, Luciano
    Garcia-Martin, Elena
    SENSORS, 2019, 19 (23)