Absorbing Boundary Conditions for Hyperbolic Systems

被引:16
作者
Ehrhardt, Matthias [1 ]
机构
[1] Berg Univ Wuppertal, Lehrstuhl Angew Math & Numer Anal, Fachbereich C Math & Nat Wissensch, D-42119 Wuppertal, Germany
关键词
Absorbing boundary conditions; hyperbolic system; Engquist and Majda approach; strict well-posedness; GKS-stability; PERFECTLY MATCHED LAYERS; INDEPENDENT STABILITY-CRITERIA; LINEARIZED EULER EQUATIONS; TIME-DEPENDENT PROBLEMS; DIFFERENCE APPROXIMATIONS; HIGH-ORDER; WAVE-EQUATION; NUMERICAL-SIMULATION; RADIATION CONDITIONS; SCHEMES;
D O I
10.4208/nmtma.2010.33.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with absorbing boundary conditions for hyperbolic systems in one and two space dimensions. We prove the strict well-posedness of the resulting initial boundary value problem in 1D. Afterwards we establish the GKS-stability of the corresponding Lax-Wendroff-type finite difference scheme. Hereby, we have to extend the classical proofs, since the (discretized) absorbing boundary conditions do not fit the standard form of boundary conditions for hyperbolic systems.
引用
收藏
页码:295 / 337
页数:43
相关论文
共 103 条
[1]   On the construction and analysis of absorbing layers in CEM [J].
Abarbanel, S ;
Gottlieb, D .
APPLIED NUMERICAL MATHEMATICS, 1998, 27 (04) :331-340
[2]   A mathematical analysis of the PML method [J].
Abarbanel, S ;
Gottlieb, D .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 134 (02) :357-363
[3]   Well-posed perfectly matched layers for advective acoustics [J].
Abarbanel, S ;
Gottlieb, D ;
Hesthaven, JS .
JOURNAL OF COMPUTATIONAL PHYSICS, 1999, 154 (02) :266-283
[4]   Nonreflecting boundary conditions for the time-dependent wave equation [J].
Alpert, B ;
Greengard, L ;
Hagstrom, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 180 (01) :270-296
[5]   Rapid evaluation of nonreflecting boundary kernels or time-domain wave propagation [J].
Alpert, B ;
Greengard, L ;
Hagstrom, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) :1138-1164
[6]  
AMRO T, 2007, THESIS WESTFALISCHE
[7]  
ANGELOPOULOS CD, 1992, B GREEK MATH SOC, V34, P161
[8]   Bayliss-Turkel-lilte radiation conditions on surfaces of arbitrary shape [J].
Antoine, X ;
Barucq, H .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1999, 229 (01) :184-211
[9]   Microlocal diagonalization of strictly hyperbolic pseudodifferential systems and application to the design of radiation conditions in electromagnetism [J].
Antoine, X ;
Barucq, H .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2001, 61 (06) :1877-1905
[10]  
Antoine X, 2008, COMMUN COMPUT PHYS, V4, P729