Laser noise imposed limitations of ensemble quantum metrology

被引:8
作者
Plankensteiner, D. [1 ]
Schachenmayer, J. [2 ]
Ritsch, H. [1 ]
Genes, C. [1 ,3 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, Tech Str 21A, A-6020 Innsbruck, Austria
[2] Univ Colorado, Dept Phys, JILA, NIST, 440 UCB, Boulder, CO 80309 USA
[3] TU Wien Atominst, Vienna Ctr Quantum Sci & Technol, Stad Allee 2, A-1020 Vienna, Austria
基金
奥地利科学基金会;
关键词
laser noise; quantum metrology; Ramsey spectroscopy; precision measurements; quantum noise; theoretical physics; SYSTEMS; SPECTROSCOPY; TRANSITION; PHYSICS; CLOCKS; STATES; GASES;
D O I
10.1088/0953-4075/49/24/245501
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Laser noise is a decisive limiting factor in high precision spectroscopy of narrow lines using atomic ensembles. In an idealized Doppler and differential-light-shift-free magic wavelength lattice configuration, it remains as one distinct principal limitation beyond collective atomic decay. In this work we study the limitations originating from laser phase and amplitude noise in an idealized Ramsey pulse interrogation scheme with uncorrelated atoms. Phase noise leads to a saturation of the frequency sensitivity with increasing atom number while amplitude noise implies a scaling 1/root T with T being the interrogation time. We employ a technique using decoherence-free subspaces first introduced in Dorner (2012 New J. Phys. 14 043011) which can restore the scaling with the square root of the inverse particle number 1/root N. Similar results and improvements are obtained numerically for a Rabi spectroscopy setup.
引用
收藏
页数:8
相关论文
共 34 条
[11]   Establishing Einstein-Poldosky-Rosen Channels between Nanomechanics and Atomic Ensembles [J].
Hammerer, K. ;
Aspelmeyer, M. ;
Polzik, E. S. ;
Zoller, P. .
PHYSICAL REVIEW LETTERS, 2009, 102 (02)
[12]   LASER-NOISE-INDUCED POPULATION FLUCTUATIONS IN 2-LEVEL AND 3-LEVEL SYSTEMS [J].
HASLWANTER, T ;
RITSCH, H ;
COOPER, J ;
ZOLLER, P .
PHYSICAL REVIEW A, 1988, 38 (11) :5652-5659
[13]   Quantum metrology subject to spatially correlated Markovian noise: restoring the Heisenberg limit [J].
Jeske, Jan ;
Cole, Jared H. ;
Huelga, Susana F. .
NEW JOURNAL OF PHYSICS, 2014, 16
[14]   QuTiP 2: A Python']Python framework for the dynamics of open quantum systems [J].
Johansson, J. R. ;
Nation, P. D. ;
Nori, Franco .
COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (04) :1234-1240
[15]  
Katori H, 2011, NAT PHOTONICS, V5, P203, DOI [10.1038/nphoton.2011.45, 10.1038/NPHOTON.2011.45]
[16]  
Knysh S. I., 2014, ARXIV14020495
[17]   Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond [J].
Lewenstein, Maciej ;
Sanpera, Anna ;
Ahufinger, Veronica ;
Damski, Bogdan ;
Sen, Aditi ;
Sen, Ujjwal .
ADVANCES IN PHYSICS, 2007, 56 (02) :243-379
[18]   Optical atomic clocks [J].
Ludlow, Andrew D. ;
Boyd, Martin M. ;
Ye, Jun ;
Peik, E. ;
Schmidt, P. O. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (02) :637-701
[19]   Bayesian quantum frequency estimation in presence of collective dephasing [J].
Macieszczak, Katarzyna ;
Fraas, Martin ;
Demkowicz-Dobrzanski, Rafal .
NEW JOURNAL OF PHYSICS, 2014, 16
[20]   Force sensing based on coherent quantum noise cancellation in a hybrid optomechanical cavity with squeezed-vacuum injection [J].
Motazedifard, Ali ;
Bemani, F. ;
Naderi, M. H. ;
Roknizadeh, R. ;
Vitali, D. .
NEW JOURNAL OF PHYSICS, 2016, 18