Sulphide capacity prediction of CaO-SiO2-MgO-Al2O3slag system by using regularized extreme learning machine

被引:16
作者
Xin, Zi-Cheng [1 ]
Zhang, Jiang-Shan [1 ]
Lin, Wen-Hui [1 ]
Zhang, Jun-Guo [2 ]
Jin, Yu [2 ]
Zheng, Jin [2 ]
Cui, Jia-Feng [2 ]
Liu, Qing [1 ]
机构
[1] Univ Sci & Technol Beijing USTB, State Key Lab Adv Met, Beijing 100083, Peoples R China
[2] Hebei Iron & Steel Co Ltd, Tangshan Branch, Tangshan, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Steelmaking; slagging; sulphide capacity; regularized extreme learning machine; !text type='Python']Python[!/text; desulphurization; statistical evaluation; intelligent algorithm; OPTICAL BASICITY; NEURAL-NETWORK; SLAGS; DESULFURIZATION; PHOSPHORUS; SULFUR; CAF2; MGO;
D O I
10.1080/03019233.2020.1771892
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Desulphurization is essential in the steelmaking process for high-quality steel production, and sulphide capacity has proven to be an effective index to evaluate the desulphurization ability of molten slag or flux. Several analytical or empirical models have been proposed to calculate the sulphide capacity. However, these models usually show insufficient generalization ability when new variables/data are introduced, which limits their practical application. In this work, experimental data were collected from the literature and a regularized extreme learning machine (RELM) model was established to predict the sulphide capacity of the CaO-SiO2-MgO-Al(2)O(3)slag system. The results demonstrated that the proposed model is robust for the prediction of sulphide capacity under different conditions. The coefficient of determination (R-2), correlation coefficient (r), root-mean-square error (RMSE) of the optimal model reached 0.9763, 0.9881, 0.113, respectively, which outperform the results of the reported models.
引用
收藏
页码:275 / 283
页数:9
相关论文
共 50 条
[41]   Sulphide capacity and sulphur solubility in CaO-Al2O3 and CaO-Al2O3-CaF2 slags [J].
Ban-Ya, S ;
Hobo, M ;
Kaji, T ;
Itoh, T ;
Hino, M .
ISIJ INTERNATIONAL, 2004, 44 (11) :1810-1816
[42]   Carbon Solubility in the CaO-SiO2-3MgO-CaF2 Slag System [J].
Park, Jun-Yong ;
Jung, Sung-Mo ;
Sohn, Il .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2014, 45 (02) :329-333
[43]   A comprehensive investigation on the viscosity and structure of CaO-SiO2-Al2O3-MgO-BaO slag with different Al2O3/SiO2 ratios [J].
Qin, Jianghao ;
Liu, Wenguo ;
Wu, Huajie ;
Wang, Jingsong ;
Xue, Qingguo ;
Zhao, Hongbo ;
Zuo, Haibin .
JOURNAL OF MOLECULAR LIQUIDS, 2022, 365
[44]   A Study on the Viscous Behaviour with K2O Additions in the CaO-SiO2-Al2O3-MgO-K2O Quinary Slag System [J].
Kim, W. H. ;
Sohn, I. ;
Min, D. J. .
STEEL RESEARCH INTERNATIONAL, 2010, 81 (09) :735-741
[45]   Measuring and Modeling of Density for Selected CaO-MgO-Al2O3-SiO2 Slag With Low Silica [J].
Xu Ji-fang ;
Zhang Jie-yu ;
Jie Chang ;
Tang Lei ;
Chou Kuo-chih .
JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2012, 19 (07) :26-32
[46]   Sulphide capacities of CaO-Al2O3-SiO2 slags at 1550, 1600 and 1650 degrees C [J].
Gornerup, M ;
Wijk, O .
SCANDINAVIAN JOURNAL OF METALLURGY, 1996, 25 (03) :103-107
[47]   Effect of MgO on the Viscous Behavior of CaO-SiO2-Al2O3-MgO Welding Flux System [J].
Kim, Hyuk ;
Jung, Eun Jin ;
Jeon, Young Duck ;
Min, Dong Joon .
JOURNAL OF THE KOREAN INSTITUTE OF METALS AND MATERIALS, 2009, 47 (02) :114-120
[48]   Experimental measurements and modelling of viscosity in CaO-Al2O3-MgO slag system [J].
Xu, J. -F. ;
Zhang, J. -Y. ;
Jie, C. ;
Ruan, F. ;
Chou, K. -C. .
IRONMAKING & STEELMAKING, 2011, 38 (05) :329-337
[49]   The mechanism of boron removal in the CaO-SiO2-Al2O3 slag system for SoG-Si [J].
Jung, Eun Jin ;
Moon, Byung Moon ;
Seok, Seong Ho ;
Min, Dong Joon .
ENERGY, 2014, 66 :35-40
[50]   Viscosity Model for Iron Blast Furnace Slags in SiO2-Al2O3-CaO-MgO System [J].
Han, Chen ;
Chen, Mao ;
Zhang, Weidong ;
Zhao, Zhixing ;
Evans, Tim ;
Nguyen, Anh V. ;
Zhao, Baojun .
STEEL RESEARCH INTERNATIONAL, 2015, 86 (06) :678-685