Sulphide capacity prediction of CaO-SiO2-MgO-Al2O3slag system by using regularized extreme learning machine

被引:16
作者
Xin, Zi-Cheng [1 ]
Zhang, Jiang-Shan [1 ]
Lin, Wen-Hui [1 ]
Zhang, Jun-Guo [2 ]
Jin, Yu [2 ]
Zheng, Jin [2 ]
Cui, Jia-Feng [2 ]
Liu, Qing [1 ]
机构
[1] Univ Sci & Technol Beijing USTB, State Key Lab Adv Met, Beijing 100083, Peoples R China
[2] Hebei Iron & Steel Co Ltd, Tangshan Branch, Tangshan, Hebei, Peoples R China
基金
中国国家自然科学基金;
关键词
Steelmaking; slagging; sulphide capacity; regularized extreme learning machine; !text type='Python']Python[!/text; desulphurization; statistical evaluation; intelligent algorithm; OPTICAL BASICITY; NEURAL-NETWORK; SLAGS; DESULFURIZATION; PHOSPHORUS; SULFUR; CAF2; MGO;
D O I
10.1080/03019233.2020.1771892
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Desulphurization is essential in the steelmaking process for high-quality steel production, and sulphide capacity has proven to be an effective index to evaluate the desulphurization ability of molten slag or flux. Several analytical or empirical models have been proposed to calculate the sulphide capacity. However, these models usually show insufficient generalization ability when new variables/data are introduced, which limits their practical application. In this work, experimental data were collected from the literature and a regularized extreme learning machine (RELM) model was established to predict the sulphide capacity of the CaO-SiO2-MgO-Al(2)O(3)slag system. The results demonstrated that the proposed model is robust for the prediction of sulphide capacity under different conditions. The coefficient of determination (R-2), correlation coefficient (r), root-mean-square error (RMSE) of the optimal model reached 0.9763, 0.9881, 0.113, respectively, which outperform the results of the reported models.
引用
收藏
页码:275 / 283
页数:9
相关论文
共 50 条
[31]   Effect of Composition on Desulfurization Capacity in the CaO-SiO2-Al2O3-MgO-CaF2-BaO System [J].
Yanhong Gao ;
Qingcai Liu ;
Lingtao Bian .
Metallurgical and Materials Transactions B, 2012, 43 :229-232
[32]   Phase Equilibria in the System "FeO"-CaO-SiO2-Al2O3-MgO with CaO/SiO2 1.3 [J].
Jang, Kyoung-oh ;
Ma, Xiaodong ;
Zhu, Jinming ;
Xu, Haifa ;
Wang, Geoff ;
Zhao, Baojun .
ISIJ INTERNATIONAL, 2016, 56 (06) :967-976
[33]   Desulfurization characteristics of CaO-SiO2-BaO-CaF2-Al2O3-MgO refining slag [J].
Gao, YH ;
Bian, LT .
JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2005, 12 (05) :1-+
[34]   Iron redox equilibria in CaO-Al2O3-SiO2 and MgO-CaO-Al2O3-SiO2 slags [J].
Lixiang Yang ;
G. R. Belton .
Metallurgical and Materials Transactions B, 1998, 29 :837-845
[35]   Modelling the density of Al2O3-CaO-MgO-SiO2 system using the CALPHAD approach [J].
Moharana, Niraja ;
Seetharaman, Seshadri ;
Viswanathan, N. N. ;
Kumar, K. C. Hari .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2020, 71
[36]   Flowability and structural evolution of CaO-SiO2-MgO-Al2O3 slag with varying MgO/CaO ratios:Experiments and MD simulations [J].
Zhang, Shuo ;
Hou, Yong ;
Guo, Jia ;
Zhou, Hanghang ;
Lv, Xuewei .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2024, 634
[37]   Thermodynamics of Gold Dissolution Behavior in CaO-SiO2-Al2O3-MgOsat Slag System [J].
Han, Yun Soon ;
Swinbourne, Douglas R. ;
Park, Joo Hyun .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 2015, 46 (06) :2449-2457
[38]   Effect of Na2O on Dissolution Rate of Alumina in CaO-Al2O3-MgO-SiO2 Slag [J].
Shu, Qifeng ;
Wang, Yanfei ;
Li, Jiangling ;
Liu, Yang ;
Li, Pengfei ;
Chou, Kuochih .
ISIJ INTERNATIONAL, 2015, 55 (11) :2297-2303
[39]   Hot Metal Desulfurization by CaO-SiO2-CaF2-Na2O Slag Saturated with MgO [J].
Cho, Moon Kyung ;
Cheng, Jin ;
Park, Joo Hyun ;
Min, Dong Joon .
ISIJ INTERNATIONAL, 2010, 50 (02) :215-221
[40]   Carbon Solubility in the CaO-SiO2-3MgO-CaF2 Slag System [J].
Jun-Yong Park ;
Sung-Mo Jung ;
Il Sohn .
Metallurgical and Materials Transactions B, 2014, 45 :329-333